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Abstract

Minimal structured perturbations are constructed such that an ap-
proximate eigenpair of a nonlinear eigenvalue problem in homogeneous
form is an exact eigenpair of an appropriately perturbed nonlinear ma-
trix function. Structured and unstructured backward errors are com-
pared. These results extend previous results for (structured) matrix
polynomials to more general functions. Structured and unstructured
pseudospectra for nonlinear eigenvalue problems are also discussed.
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1 Introduction

In this paper we consider the problem of computing complex pairs (c, s) ∈
C2 \ {0} with |c|2 + |s|2 = 1 and vectors x ∈ Cn such that the nonlinear
matrix equation

M(c, s)x = 0 (1)
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holds, where the matrix valued function M has the form

M(c, s) :=
m∑
j=1

Mjfj(c, s), (2)

and where we assume that the functions f1(c, s), f2(c, s), . . . , fm(c, s) and the
coefficient matrices M1,M2, . . . ,Mm ∈ Cn,n are given data.

We call pairs (ci, si) satisfying (1) eigenvalues and the associated vectors
xi eigenvectors of (1) and if si 6= 0 then we sometimes write λi = ci

si
. We also

sometimes (for abbreviation and in abuse of notation) write M(c, s) = Mz,
where M = [M1, . . . ,Mm] and f = [f1, . . . , fm].

Nonlinear eigenvalue problems of the described form arise in many applica-
tions, see [38, 47] for surveys with a large number of applications and [10] for
a collection of benchmark examples. Let us consider a few specific examples.

A nonrational eigenvalue problems of the form(
K + ı

√
κ2 − κ2c D − κ2M

)
x = 0

has been studied in [51]. Here κ is an unknown, κc is a fixed reference
frequency, and K,M,D are large and sparse symmetric stiffness, mass and
damping matrices, respectively. This problem can be turned into a polyno-
mial eigenvalue problem by introducing λ =

√
κ2 − κ2c .

In [13] a rational eigenvalue problem arising in the numerical solution of a
fluid-structure interaction is introduced. It has the form(

λ2

a2
M +K +

λ2

λβ + α
D

)
x = 0, (3)

where a is the speed of sound in the given material, and α, β are positive
constants. The matrices M , K are large sparse symmetric positive definite
mass and stiffness matrices, respectively, and the symmetric positive semidef-
inite matrix D describes the effect of an absorbing wall. Clearing out the
denominator in (3) leads to a cubic eigenvalue problem

(λ3βM + λ2(αM + a2A) + λ(a2βK) + a2αK)x = 0. (4)

Although the leading coefficient is positive definite and thus there are no
infinite eigenvalues, in other acoustic problems, see e.g., [37], the mass matrix
may be singular.
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In the polynomial setting, in order to avoid some of the difficulties with
infinite eigenvalues, one may use the homogeneous framework and study

(s3βM + s2c(αM + a2A) + sc2(a2βK) + c3a2αK)x = 0. (5)

In the general nonlinear setting this may still not cure all the difficulties with
infinite eigenvalues as the homogeneous version of (3) yields

M(c, s)x = (
s2

c2a2
M +K +

s2

c(sβ + cα)
A)x = 0, (6)

where c = 0 is still problematic.
Rational eigenvalue problems arising in the finite element simulation of

mechanical problems, see [42, 49] for several applications, often have the
form (

P (λ) +Q(λ)
∑̀
i=1

λ

λ− σi
Ei

)
x = 0, (7)

where P andQ are real symmetric matrix polynomials (with usually large and
sparse coefficients), and Ei ∈ Rn,ri are low rank matrices for i = 1, 2, . . . , `.
Classical examples arising for P,Q are P = λA−B, Q = I, P = λA−B,Q =
λ2I, or P = λ2A + B, Q = I with A,B ∈ Rn,n being real symmetric and
sparse and with different definiteness structure. It is again obvious that this
problem can be turned into a high degree polynomial eigenvalue problem by
clearing out the denominators.

Once a nonlinear eigenvalue problem of the form (1) can be converted into
a polynomial eigenvalue problem, it can then subsequently can be converted
into a linear eigenvalue problem by one of the usual linearization approaches,
see e.g., [17, 22, 35, 36, 23]. It has demonstrated that this approach of turning
a rational problem into a larger linear problem is successful in many practical
applications, see e.g. [26, 27, 34]. However, the size of the problem may
substantially increase and, moreover, typically extra un-physical eigenvalues
are introduced. These have to be recognized and removed from the computed
spectrum.

Example 1.1 Consider the symmetric rational eigenvalue problem

R(λ)x :=

[
λ− α + 1

λ−1 1

1 0

]
x = 0,
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which has only infinite eigenvalues, since detR(λ) = −1 for all λ ∈ C. Scaling
the problem by d(λ) = λ − 1, the rational eigenvalue problem becomes a
polynomial eigenvalue problem with symmetric coefficients, which has further
eigenvalues at 1 associated with the roots of d. We obtain the polynomial
eigenvalue problem

P (λ)x =

[
(λ− 1)(λ− α) + 1 λ− 1

(λ− 1) 0

]
x = 0,

which has a double eigenvalue at∞ and also a double eigenvalue at 1. Thus,
turning the rational problem into a polynomial one has added two eigenvalues
that were not there before.

Considering a symmetric linearization [22, 35] of the polynomial problem
one obtains the symmetric linear eigenvalue problem

L(λ)z =

λ


1 0 0 0
0 0 0 0
0 0 −α 1
0 0 1 0

+


−(α + 1) 1 α 1
−1 0 −1 0
α −1 0 0
−1 0 0 0


 z = 0.

Analyzing L(λ) for different α, one sees that it has a Jordan block of size 2
at ∞ and two Jordan blocks of size 1 for the eigenvalue λ = α.

Due to the Jordan block at ∞ this problem is very sensitive to perturba-
tions. If, e.g., we perturb the problem to

Pε(λ)x =

([
(λ− 1)(λ− α) + 1 λ− 1

(λ− 1) ε

])
x = 0,

then the problem has two finite eigenvalues as roots of (λ2 − (α+ 1)λ+ α+
1)ε+1 and clearly by appropriate choices of ε and α any value in the complex
plane can be achieved.

Example 1.1 shows some of the difficulties that may arise in eigenvalue prob-
lems of the form (1) and it shows the need for a homogeneous formulation to
have a uniform treatment of finite and infinite eigenvalues. It also motivates
the desire for a careful perturbation analysis on the original data that avoids
turning the rational problem into a polynomial problem.

There also exist practical problems where a nonlinear eigenvalue problem
cannot be turned into a polynomial eigenvalue problem. Consider, e.g., the
non-rational eigenvalue problem of the form(

λM0 +M1 +M2e
−τλ)x = 0, (8)
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where the Mi are real matrix coefficients, and τ is a real parameter. Such
problems arise in the stability analysis of single delay differential-algebraic
equations [15, 19, 25, 28, 39, 43], where τ describes the delay time. In this
case we also cannot transform this problem into homogeneous form easily.
However, if good rational approximations to the non-rational functions are
available, then these can be used.

Example 1.2 Consider for example the exponential eigenvalue problem (8)
and replace the exponential term by a continued fraction expansion. Then
we can make these expressions rational and use the homogenization of the
rational approximations. For the exponential function, this method is ap-
plicable as long as every finite eigenvalue of M lies in the left half plane.

Introduce the sequence {hk(z)} =

{
nk(z)

dk(z)

}
, with

n0 = 1, n1 = 1, d0 = 0, d1 = 1

nk =

{
(k − 1)nk−1 − znk−2, if k = 2, 4, 6, . . .

2nk−1 + znk−2, if k = 3, 5, 7, . . .

dk =

{
(k − 1)dk−1 − zdk−2, if k = 2, 4, 6, . . .

2dk−1 + zdk−2, if k = 3, 5, 7, . . .

The sequence {hk(z)} converges uniformly to ez as k → ∞ in any finite
domain of the complex plane, see e.g., [40].

We can express hk in homogeneous form as

hk(c, s) =
nk(c, s)

dk(c, s)
=
s(k − 1)nk−1 + cτsk−2
s(k − 1)dk−1 + cτdk−2

,

when k is even and

hk(c, s) =
nk(c, s)

dk(c, s)
=

2snk−1 + cτnk−2
2sdk−1 + cτdk−2

,

for odd k. Using these rational expressions to approximate the exponential

terms in M(λ)x = (zI − A1 − A2e
−zτ )x = 0, setting z =

c

s
and clearing out

the denominator, we obtain the homogeneous approximations,

(c[s(k − 1)nk−1 + cτnk−2]I − s[s(k − 1)nk−1 + cτnk−2]A1

−[s2(k − 1)dk−1 + cτdk−2]A2

)
x = 0,
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for even k and(
c[2snk−1 + cτnk−2]I − s[2snk−1 + cτnk−2]A1 − [2s2dk−1 + csτdk−2]A2

)
x = 0

for odd k.

On the other hand it is not all clear whether the computed eigenvalues are
of the desired accuracy, since the perturbation and error analysis for these
kind of problems is still mainly open. Even for polynomial problems the
perturbation theory and the computation of backward errors and even more
the structured perturbation theory and backward errors, is only very recent,
see [1, 2, 5, 7, 8, 11, 12, 21, 22, 24, 45, 46]. Such a perturbation analysis is
also needed, when the nonlinear eigenvalue problem is solved directly by a
nonlinear eigenvalue method, see e.g., [38, 41, 42, 50].

Classical perturbation analysis would consider the question that we perturb
the nonlinear functions fj as fj + δfj and the coefficients Mj as Mj + δMj,
j = 1, . . . ,m and consider instead of (2) the perturbed nonlinear function

M̃(c, s) := (M + ∆M)(f + δf) =
m∑
j=1

(Mj + ∆Mj)(fj + δfj), (9)

to study how the eigenvalues change under these perturbations.
This problem is extremely difficult for general sets of functions fj. Instead,

in this paper we assume that the perturbations in the functions fj are known
(or can be bounded), i.e., that we have given functions f̃j = fj +δfj and con-
sider only perturbations in the coefficient matrices Mj so that the perturbed
problem is of the form

M̃(c, s) := (M + ∆M)f̃ =
m∑
j=1

(Mj + ∆Mj)f̃j. (10)

This is a reasonable assumption in many applications, since the fj are typ-
ically elementary scalar functions and thus the perturbation analysis is well
understood. Thus, we assume in the following that our original eigenvalue
problem has the form

M(c, s) :=
m∑
j=1

Mj f̃j(c, s), (11)
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with known perturbed functions f̃j = fj + δfj, j = 1, . . . ,m, where the
specific perturbation on the nonlinear functions with all δfi = 0 is the original
problem.

An important part of perturbation analysis is the construction of backward
errors, i.e., for given perturbed pair of eigenvalue, eigenvector (which in the
following we call eigenpair) to construct the nearest problem of the same
type which has this pair as its eigenvalue and eigenvector, respectively. For
a given approximate eigenpair and assuming that we know the perturbed
function values f̃j(λ, µ), then the backward error is the smallest perturbation
(in an appropriate norm) to the coefficient matrices ∆M = [∆M1, . . . ,∆Mm]
such that ((λ, µ), x)) becomes the exact eigenpair of the perturbed problem
(M+ ∆M)x = 0.

There is very little literature that deals with the perturbation analysis of
rational or more general nonlinear eigenvalue problems, see e.g., [13, 16, 44],
but in these articles usually only problems without infinite eigenvalues are
considered. But, as we will see below, it turns out that for the discussed class
of backward errors the theory developed in [7, 8] for the polynomial case can
be easily extended.

The main goal of this paper is therefore to derive backward errors for the
problem in homogeneous form (thus including infinite eigenvalues) under the
assumption that the perturbations in the functions fj are known, and to
compare structured and unstructured backward errors. For our analysis we
assume that the functions fj, f̃j are sufficiently smooth in the neighborhood
of the perturbed eigenvalues, so that all necessary derivatives are locally
available.

The paper is organized as follows. In Section 2, we introduce the nota-
tion and recall some of the techniques for polynomial eigenvalue problems
from [7, 8]. In Sections 3 and 4 we then construct structured backward er-
rors for complex symmetric/skew-symmetric and Hermitian/skew-Hermitian
problems, respectively, and compare these to the corresponding unstructured
backward errors. These results cover finite and infinite eigenvalues and are
studied in a homogeneous framework. In the last section we discuss and
compare unstructured and structured pseudospectra for the discussed class
of nonlinear eigenvalue problems. In all the constructions we exclude poles
of the f̃j.
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2 Notation and preliminaries

For a nonnegative vector w = [w1, w2, . . . , wn]T ∈ Rn, and a vector x ∈ Cn

we introduce the weighted (semi-)norm

‖x‖w,2 := ‖[w1x1, w2x2, . . . , wnxn]T‖2,

where ‖ ‖2 denotes the classical Euclidean norm in Cn. If w is strictly positive,
then this is a norm, and if w has zero components then it is a semi-norm.
For a nonnegative vector w ∈ Rn, we define the componentwise inverse via
w−1 := [w−11 , w−12 , . . . , w−1n ]T , where we use the convention that w−1i = 0 if
wi = 0. By σmax(A) and σmin(A), we denote the largest and smallest singular
values of a matrix A, respectively. The identity matrix is denoted by I, AT

stands for transpose and AH for the conjugate transpose of a matrix A ∈ Cn,n.
For x ∈ Cn with xHx = 1, we frequently use the projector Px := I − xxH
onto the orthogonal complement of the space spanned by x.

We will construct structured and unstructured backward errors both in
spectral and Frobenius norm on Cn,n, which are defined by

‖A‖2 := max
‖x‖=1

‖Ax‖2, ‖A‖F := (traceAHA)1/2,

respectively and we sometimes use ‖A‖q, where q ∈ {2, F}.
The vector space of all tuples M = [M1,M2, . . . ,Mm] with coefficients in

Mi ∈ Cn,n, is denoted by Mm(Cn,n). With a nonnegative weight vector
w ∈ Rn, it can be equipped with a weighted norm/seminorm |||.|||w,q given by

|||M |||w,q := ‖[M1, . . . ,Mm]‖w,q = (w2
1‖M1‖2q + . . .+ w2

m‖Mm‖2q)1/2,

for q ∈ {2, F}, respectively. For convenience, if w := [1, 1, . . . , 1]T then we
leave off the subscript w.

In the following we consider matrix functions of the formM(c, s) as in (11),
with eigenvalues on the Riemann sphere R = {(c, s) ∈ C2 \{0} | |c|2 + |s|2 =
1}. Such a matrix function is called regular if det(M(λ, µ)) 6= 0 for some
(λ, µ) ∈ R, otherwise it is called singular. The spectrum of such a matrix
function is defined as

Λ(M) := {(c, s) ∈ R | rank(M(c, s)) < n}.

Let (λ, µ) ∈ R be an approximation to an eigenvalue (10) and corresponding
approximate right eigenvector x 6= 0, and suppose that we know the per-
turbations in the functions f̃j = fj + δfj, j = 1, . . . ,m, then we construct
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Frobenius and spectral norm backward errors

ηw,q(λ, µ, x,M)

:= inf{|||∆M |||w,q, ∆M ∈Mm(Cn,n), (M(λ, µ) + ∆M(λ, µ))x = 0},

where

∆M(c, s) =
m∑
j=1

∆Mj f̃j(c, s). (12)

If the problem has coefficients that are structured in a subset S ⊂Mm(Cn,n),
then we construct structured backward errors

ηSw,q(λ, µ, x,M)

:= inf{|||∆M |||w,q, ∆M ∈ S, (M(λ, µ) + ∆M(λ, µ))x = 0}.

Such backward errors were introduced for matrix polynomials in [20, 45], but
here we follow [2, 4, 5].

In order to compute the backward errors, we will need the partial gra-
dient ∇i‖z‖w,2 of a map Cm → R, z 7→ ‖z‖w,2 which is just the gradi-
ent of the map C → R, zi 7→ ‖[z1, . . . , zm]T‖w,2 which fixes the variables
z1, . . . , zi−1, zi+1, . . . , zm as constants. The gradient of the map Cm → R, z 7→
‖z‖w,2, is then defined as

∇(‖z‖w,2) = [∇1‖z‖w,2,∇2‖z‖w,2, . . . ,∇m‖z‖w,2]T .

With these definitions we have the following proposition, see [4, 8].

Proposition 2.1 Consider the map Hw,2 : Cm → R given by Hw,2(z) :=
‖[z1, . . . , zm]T‖w,2. Then Hw,2 is differentiable on Cm and

∇jHw,2(z) =
w2
jzj

Hw,2(z)
, j = 1, 2, . . . ,m.

Furthermore,

m∑
j=1

zj
∇jHw,2(z)

Hw,2(z)
= 1,

m∑
j=1

w−2j |∇jHw,2(z)|2 = 1.
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In order to simplify the presentation, in the following we use the abbreviations

f̃(λ, µ) := (f̃1(λ, µ), . . . , f̃m(λ, µ)), zMj
:=
∇jHw,2

Hw,2

|f̃(λ,µ), j = 1, . . . ,m.

(13)
We will construct backward errors for the following structured nonlinear

eigenvalue problems, which extend the polynomial classes that were intro-
duced in non-homogeneous form in [35]. We say that an eigenvalue prob-
lem of the form (11) is complex symmetric/skew-symmetric if MT (c, s) =
±M(c, s), and Hermitian/skew-Hermitian if MH(c, s) = ±M(c, s). For
symmetric/skew-symmetric problems of the form (10), if x ∈ Cn is a right
eigenvector of M(c, s) corresponding to an eigenvalue (λ, µ) ∈ R, then x
is a left eigenvector. For Hermitian/skew Hermitian eigenvalue problems,
if x ∈ Cn and y ∈ Cn are right and left eigenvectors corresponding to an
eigenvalue (λ, µ) ∈ R of M, then y and x are right and left eigenvector
corresponding to the eigenvalue (λ, µ), respectively.

For a given eigenvalue (λ, µ) we can determine the smallest perturbation
that makes this an eigenvalue, and when this is known we can determine a
concrete perturbation with this norm and a given right eigenvector x. This
follows from the following proposition.

Proposition 2.2 Consider a structured eigenvalue problem of the form (10),
with M ∈MS

m(Cn×n) and a given set of sufficiently smooth perturbed func-
tions f̃j := fj +δfj, j = 1, . . . ,m. For a given approximate eigenvalue (λ, µ),
set

Hw,2(f̃(λ, µ)) = ‖[w1f̃1(λ, µ), . . . , wmf̃m(λ, µ)]T‖2. (14)

Then the backward error, i.e., the size of the smallest perturbation that makes
this eigenvalue an eigenvalue of the perturbed problem satisfies

ηSw,2(λ, µ,M) = min
‖x‖=1

‖M(λ, µ)x‖
Hw−1,2(f̃(λ, µ))

.

Proof. With

M(λ, µ) =
m∑
i=0

Mif̃i(λ, µ),

the backward error satisfies (M(λ, µ)+∆M(λ, µ))x = 0 for some normalized
vector x, which implies that

M(λ, µ)x = −∆M(λ, µ)x.
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Hence we have that

‖M(λ, µ)x‖ ≤ |||∆M |||w,2Hw−1,2(f̃(λ, µ))

which can reformulated as

‖M(λ, µ)x‖
Hw−1,2(f̃(λ, µ))

≤ |||∆M |||w,2

i.e., we have

ηSw,2(λ, µ,M) ≥ ‖M(λ, µ)x‖
Hw−1,2(f̃(λ, µ))

.

To show equality, consider any normalized vector x, a normalized vector y
with yHx = 1, the rank one matrix M(λ, µ)xyH , and choose

∆Mi =
w−2i signf̃i(λ, µ)|f̃i(λ, µ)|

Hw−1,2(f̃(λ, µ)2
M(λ, µ)xyH ,

where sign(λ) :=
λ

|λ|2
if λ 6= 0 and sign(λ) := 0 if λ = 0. Then we have that

(M(λ, µ) + ∆M(λ, µ))x = 0, which implies that

‖∆Mx‖ =
‖M(λ, µ)xyHx‖
Hw−1,2(f̃(λ, µ))

=
‖M(λ, µ)x‖

Hw−1,2(f̃(λ, µ))
.

Minimizing over all possible normalized vectors x then gives the desired in-
equality.

From Proposition 2.2 it is clear that ηSw,2(λ, µ,M) ≤ ηw,2(λ, µ,M), and
since the constructed minimal perturbation is of rank one, we also have
ηSw,F (λ, µ,M) ≤ ηw,F (λ, µ,M).

We will also make use of the following completion result which is a direct
corollary of Theorem 1.2, [14].

Proposition 2.3 1. Let A = ±AT , C = ±BT ∈ Cn,n and χ := σmax

([
A
B

])
.

Then there exists a symmetric/skew-symmetric matrix X ∈ Cn,n such

that σmax

([
A ±BT

B X

])
= χ, and X has the form

X := −KAKT + χ(I −KKH)1/2Z(I −KKT )1/2,

where K := B(χ2I − AA)−1/2 and Z = ±ZT ∈ Cn,n is an arbitrary
matrix such that ‖Z‖2 ≤ 1.
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2. For A = ±AH , B = ±BH , set χ :=

∥∥∥∥ [AB
] ∥∥∥∥

2

. Then there exists an

Hermitian/skew-Hermitian matrix D, respectively, such that

∥∥∥∥ [A ±BH

B D

] ∥∥∥∥
2

=

χ and D is of the form D := −KAKH+χ(I−KKH)1/2Z(I−KKH)1/2,
where K := B(χ2I−A2)−1/2 and Z = ±ZH is an arbitrary matrix such
that ‖Z‖2 ≤ 1.

For our theory, we always fix the arbitrary part to be Z = 0, because this
minimizes the spectral and Frobenius norm.

After these preliminary results in the following section we derive backward
errors for the different classes of structured nonlinear matrix functions.

3 Backward errors for symmetric/skew-symmetric

nonlinear eigenvalue problems

In this section we will construct backward error formulas for homogeneous
symmetric/skew-symmetric nonlinear eigenvalue problems.

Theorem 3.1 Let M ∈ M(Cn,n) be a regular symmetric/skew-symmetric
nonlinear matrix equation of the form (11), and let x ∈ Cn with xHx = 1.

With k := −M(λ, µ)x, introduce the perturbation matrices

∆Mj :=

{
−xxTMjxx

H + zMj

[
xkT + kxH − 2(xTk)xxH

]
if Mj = MT

j ,
zMj

[
xkT + kxH − (xTk)xxH

]
if Mj = −MT

j ,

for j = 1, . . . ,m, where zMj
is as in (13), and form

∆M(c, s) =
m∑
j=0

f̃j(c, s)∆Mj.

Then ∆M has the desired symmetry structure and satisfies (M(λ, µ) +
∆M(λ, µ))x = 0.

Proof. The proof is a slight modification of the proof for the polynomial case
in [7]. In the symmetric case we have for all j = 1, . . . ,m that ∆Mj = ∆MT

j .

12



Hence ∆M is symmetric, and we have that

(M(λ, µ) + ∆M(λ, µ))x =
m∑
j=1

f̃j(λ, µ)(Mj + ∆Mj)x

=
m∑
j=1

f̃j(λ, µ)
[
Mjx− xxTMjx+ zMj

[
xkTx+ k − 2(xTk)x

]]
= (I − xxT )(

m∑
j=1

f̃j(λ, µ)Mj)x+
[
xkTx+ k − 2(xTk)x

] m∑
j=1

f̃j(λ, µ)zMj
.

By Proposition 2.1, we have
m∑
j=1

f̃j(λ, µ)zMj
= 1. Hence

(M(λ, µ) + ∆M(λ, µ))x = −(I − xxT )k + xkTx+ k − 2(xTk)x

= −k + x(xTk) + x(kTx) + k − 2(xTk)x

= x(xTk) + x(xTk)− 2(xTk)x = 0,

since kTx = xTk.
The proof for the skew-symmetric case follows analogously.
Using Theorem 3.1, we now obtain the following backward errors for com-

plex symmetric nonlinear eigenvalue problems.

Theorem 3.2 Let M ∈ M(Cn,n) be as in (11) with complex symmetric
coefficients, let x ∈ Cn be such that xHx = 1 and let k := −M(λ, µ)x.

i) The structured backward error with respect to the Frobenius norm is
given by

ηSw,F (λ, µ, x,M) =

√
2‖k‖22 − |xTk|2

Hw−1,2(f̃(λ, µ))

and there exists a unique complex symmetric ∆M(c, s) :=
∑m

j=1 f̃j∆Mj

with coefficients

∆Mj = zMj

[
xkT + kxH − (xTk)xxH

]
, j = 1, . . . ,m,

such that the structured backward error satisfies ηSw,F (λ, µ, x,M) =
|||∆M|||w,F and x, x are left and right eigenvectors corresponding to
the eigenvalue (λ, µ) of M+ ∆M, respectively.
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ii) The structured backward error with respect to the spectral norm is given
by

ηSw,2(λ, µ, x,M) =
‖k‖2

Hw−1,2(f̃(λ, µ))

and there exists a complex symmetric ∆M(c, s) :=
∑m

j=1 f̃j∆Mj with
coefficients

∆Mj := zMj

[
xkT + kxH − (kTx)xxH − xTk(I − xxT )kkT (I − xxH)

‖k‖22 − |xTk|2

]
.

such that |||∆M|||w,2 = ηSw,2(λ, µ, x,M) and (M(λ, µ) + ∆M(λ, µ))x =
0.

Proof. The proof is a slight modification of the proof for the polynomial
case [7]. By Theorem 3.1 we have that (M(λ, µ)+∆M(λ, µ))x = 0 and hence
k = ∆M(λ, µ)x. Now we construct a unitary matrix U which has x as its first

column, i.e., U = [x, U1] ∈ Cn×n and let ∆̃Mj := UT∆MjU =

[
dj,j dTj
dj Dj,j

]
,

where Dj,j = DT
j,j ∈ C(n−1)×(n−1). Then

U∆̃M(λ, µ)UH = UUT (∆M(λ, µ))UHU = ∆M(λ, µ),

and hence
U∆̃M(λ, µ)UHx = ∆M(λ, µ)x = k,

which implies that

∆̃M(λ, µ)UHx = UTk =

[
xTk
UT
1 k

]
.

Therefore, we get that

[∑m
j=1 f̃j(λ, µ)dj,j∑m
j=1 f̃j(λ, µ)dj

]
=


∑m

j=1wjdj,j
f̃j(λ, µ)

wj∑m
j=1wj f̃j(λ, µ)

dj
wj

 =

[
xTk
UT
1 k

]
.

To minimize the norm of the perturbation, we use the same procedure as in
the polynomial case [7] and solve this system for the parameters dj,j, dj in a
least squares sense which, together with Proposition 2.1, yields

dj,j = zMj
xTk, dj = zMj

UT
1 k, j = 1, 1, . . . ,m,

14



and thus

∆Mj = U∆̃MUH = xdj,jx
H + U1djx

H + xdTj U
H
1 + U1Dj,jU

H
1

= zMj
[(xxTkxH) + U1U

T
1 kx

H + xkTU1U
H
1 )] + U1Dj,jU

H
1

= zMj
[(xxTkxH) + (I − xxT )kxH + xkT (I − xxH))] + U1Dj,jU

H
1

= zMj

[
kxH + xkT − (kTx)xxH

]
+ U1Dj,jU

H
1 . (15)

In Frobenius norm, the unique minimal perturbation is obtained by taking
Dj,j = 0 and hence we get

‖∆Mj‖2F = |dj,j|2 + 2‖dj‖22 = |zMj
|2(|xTk|2 + 2‖UT

1 k‖22)

= |∇jHw−1,2(f̃(λ, µ))|2 2‖k‖22 − |xTk|2

Hw−1,2(f̃(λ, µ))2
,

since ‖UTk‖22 = |xTk|2 + ‖UT
1 k‖22. By Proposition 2.1, we have that

m∑
j=1

w2
j |∇jHw−1,2(f̃(λ, µ))|2 = 1,

and thus

|||∆M|||2w,F =
2‖k‖22 − |xTk|2

Hw−1,2(f̃(λ, µ))2
,

and hence,

|||∆M|||w,F =

√
2‖k‖22 − |xTk|2

Hw−1,2(f̃(λ, µ))2
.

As kTx is a scalar constant, it follows that all ∆Mj and thus also ∆M are
symmetric and

(M(λ, µ) + ∆M(λ, µ))x =
m∑
j=0

zj(λ, µ)(Mj + ∆Mj)x

= −k + (
m∑
j=0

zj∆Mj)x

= −k +
m∑
j=0

zjzMj
[kxH + xkT − xkTxxH ]x

= −k + k + xkTx− xkTx = 0,

15



where we have again used Proposition 2.1.
For the spectral norm we can apply Proposition 2.3 to (15) and get

Dj,j = −
zMj

P 2

[
xTk(UT

1 k)(UT
1 k)T

]
+ χ

[
I − (UT

1 k)(UT
1 k)H

P 2

]1/2
Z

[
I − UT

1 k(UT
1 k)T

P 2

]1/2
,

where Z = ZT and ‖Z‖2 ≤ 1, P 2 = ‖k‖22 − |xTk|2, χ :=
√
‖dj,j‖2 + ‖dj‖22.

With the special choice Z = 0 we get Dj,j = −
zMj

P 2

[
xTk(UT

1 k)(UT
1 k)T

]
and

U1Dj,jU
H
1 = −

zMj

P 2
U1U

T
1 kk

TU1U
H
1 = −

zMj

P 2
(I − xxT )kkT (I − xxH).

Hence,

∆Mj = zMj

[
kxH + xkT − x(kTx)xH

]
−
zMj

P 2
(I − xxT )kkT (I − xxH),

∆M(c, s) is symmetric, and (M(λ, µ) + ∆M(λ, µ))x = 0. With

χ := σmax

([
dj,j
dj

])
= |zMj

|
√
|xTk|2 + ‖UT

1 k‖2

=
|∇jHw−1,2(f̃(λ, µ))|
Hw−1,2(f̃(λ, µ))

‖k‖2,

then by Proposition 2.3 we have χ = ‖∆Mj‖2, and again by Proposition 2.1,

ηSw,2(λ, µ, x,M) = |||∆M|||w,2 =
‖k‖2

Hw−1,2(f̃(λ, µ))
.

As a corollary we have the following relations between structured and un-
structured backward errors.

Corollary 3.3 Let M ∈ M(Cn×n) as in (11) be regular with symmetric
coefficients, let (λ, µ) ∈ C2 \ {(0, 0)}, and let x ∈ Cn be such that xHx = 1.
Then,

ηSw,F (λ, µ, x,M) ≤
√

2ηw,2(λ, µ, x,M),

ηSw,2(λ, µ, x,M) = ηw,2(λ, µ, x,M).
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We obtain an analogous result in the case of real problems and real pertur-
bations which we omit here for brevity, we just mention that we need that
the function evaluations f̃j(λ, µ) yield real values to obtain a real backward
error. In this case the minimal perturbation has the form

∆M(λ, µ) :=
m∑
j=1

f̃j(λ, µ)∆Ej,

with coefficients

∆Ej = zMj

[
xkT + kxT − (xTk)xxT

]
, j = 1, 1, . . . ,m.

The same technique of proof also applies in the complex-skew symmetric
case. We state the results here for completeness.

Theorem 3.4 LetM∈M(Cn,n) of the form (11) be complex skew-symmetric,
let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn such that xHx = 1 and let k :=
−M(λ, µ)x. Introduce the perturbation matrices

∆Mj := −zMj

[
xkT − kxH

]
, j = 0, 1, 2, . . . ,m.

Then ∆M(c, s) =
m∑
j=1

f̃j(c, s)∆Mj is complex skew-symmetric and (M(λ, µ)+

∆M(λ, µ))x = 0.

Theorem 3.5 LetM∈M(Cn,n) of the form (11) be complex skew-symmetric,
let (λ, µ) ∈ C2 \ {(0, 0)}, let x ∈ Cn be such that xHx = 1 and let k :=
−M(λ, µ)x. The structured backward errors with respect to the Frobenius
norm and spectral norm are given by

ηSw,F (λ, µ, x,M) =

√
2‖k‖22

Hw−1,2(f̃(λ, µ))
,

ηSw,2(λ, µ, x,M) =
‖k‖2

Hw−1,2(f̃(λ, µ))
,

respectively.

The relation between structured and unstructured backward errors is then
clearly the same as in the symmetric case.

In this section we have shown that the backward error results for symmetric
and skew-symmetric matrix functions carry over from the polynomial case
to the more general case (11) with very little modifications.
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4 Backward errors for Hermitian/skew-Hermitian

nonlinear eigenvalue problems

In this section we present the results for the Hermitian/skew Hermitian case.
The proofs follow in the same way as for the symmetric/skew symmetric
problems, just with a slight modification of the proof in the construction of
the backward errors.

Theorem 4.1 Let M ∈ M(Cn,n) of the form (11) be either Hermitian or
skew-Hermitian. Let (λ, µ) ∈ C2 \ {0}, let x ∈ Cn be such that xHx = 1, and
let k := −M(λ, µ)x. Introduce the perturbation matrices

∆Mj :=

{
−xxHMjxx

H +
[
zMj

xkHPx + zMj
Pxkx

H
]
, if Mj = MH

j ,
−xxHMjxx

H −
[
zMj

xkHPx − zMj
Pxkx

H
]
, if Mj = −MH

j ,

and consider

∆M(c, s) =
m∑
j=1

f̃j(λ, µ)∆Mj ∈M(Cn×n).

Then ∆M is Hermitian/skew Hermitian and (M+ ∆M)(λ, µ)x = 0.

Proof. The proof follows the same line as the proof of Theorem 3.1.
For the construction of the backward errors we introduce

T :=

[
<(f̃1(λ,µ))

w1
. . . <(f̃m(λ,µ))

wm

=(f̃1(λ,µ))
w1

. . . =(f̃m(λ,µ))
wm

]
,

and set

t = [t1, . . . , tm]T := T+

[
<(xHk)
=(xHk)

]
, (16)

where T+ denotes the Moore-Penrose inverse of T , [18]. By ej we denote the
j-th unit vector.

Then we have the following structured backward errors.

Theorem 4.2 Let M ∈M(Cn,n) of the form (11) be a Hermitian, let x ∈
Cn such that xHx = 1 and set k := −M(λ, µ)x.

18



i) The structured backward error in Frobenius norm is given by

ηSw,F (λ, µ, x,M) =

√
2‖k‖22 − |xHk|2

Hw−1,2(f̃(λ, µ))
,

if all f̃j(λ, µ), j = 1, . . . ,m are real and

ηSw,F (λ, µ, x,M) =

√√√√ m∑
j=1

‖ejt‖22
w2
j

+ 2
‖k‖22 − |xHk|2

Hw−1,2(f̃(λ, µ))2
,

otherwise.

ii) The structured backward error in spectral norm is given by

ηSw,2(λ, µ, x,M) =
‖k‖2

Hw−1,2(f̃(λ, µ))
,

if all f̃j(λ, µ), j = 1, . . . ,m are real and

ηSw,2(λ, µ, x,M) =

√√√√ m∑
j=1

‖ejt‖22
w2
j

+
‖k‖22 − |xHk|2

Hw−1,2(f̃(λ, µ))2
,

otherwise.

Proof. By Theorem 4.1, we have (M(λ, µ) + ∆M(λ, µ))x = 0, and hence
we have k = ∆M(λ, µ)x. To construct a minimal perturbation, we complete
x to a unitary matrix U = [x, U1], U1 ∈ Cn×n−1 and let

∆̃Mj := UH∆MjU =

[
dj,j dHj
dj ∆Dj,j

]
,

where ∆Dj,j = ∆DH
j,j ∈ Cn×n−1. Then U∆̃M(λ, µ)UH = UUH(∆M(λ, µ))UHU =

∆M(λ, µ), and this implies that U∆̃M(λ, µ)UHx = ∆M(λ, µ)x = k, and
hence

∆̃M(λ, µ)UHx = UHk =

[
xHk
UH
1 k

]
.
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Since UHx = e1, we get
m∑
j=1

wjdj,j
f̃j(λ, µ)

wj
m∑
j=1

wj f̃j(λ, µ)
dj
wj

 =

[
xHk
UH
1 k

]
.

To minimize the perturbation, we solve this system for the parameters dj,j, dj
in a least square sense, and applying Proposition 2.1, we obtain d1,1...

dm,m

 =

zM1

...
zMm

xHk,
d1...
dm

 =

zM1

...
zMm

UH
1 k.

If f̃j(λ, µ) is real then dj,j = zMj
xHk is real as well. Thus if all the f̃j(λ, µ) are

real then the Frobenius norm is minimized by taking ∆Dj,j = 0 and hence,

‖∆Mj‖2F = |zMj
|2(2‖k‖22 − |xHk|2) = |∇jHw−1,2(f̃(λ, µ))|2 2‖k‖22 − |xHk|2

Hw−1,2(f̃(λ, µ))2

as ‖UHk‖2 = |xHk|2 + ‖UH
1 k‖22, and making use of Proposition 2.1. Then

|||∆M|||w,F =

√√√√ m∑
j=0

w2
j‖∆Mj‖2F =

√
2‖k‖22 − |xHk|2

Hw−1,2(f̃(λ, µ))2
.

Thus,

∆Mj = U∆̃MjU
H =

[
x U1

] [dj,j dHj
dj ∆Dj,j

] [
xH

UH
1

]
=

[
xdj,j + U1dj xdHj + U1∆Dj,j

] [xH
UH
1

]
= (xdj,j + U1dj)x

H + (xdHj + U1∆Dj,j)U
H
1

= zMj
[(xxHkxH) + U1U

H
1 kx

H + xkHU1U
H
1 )] + U1∆Dj,jU

H
1

= zMj
[(xxHkxH) + Pxkx

H + xkHPx] + U1∆Dj,jU
H
1 ,

and after simplification we get

∆Mj = zMj

[
kxH + xkH − (kHx)xxH

]
+ U1∆Dj,jU

H
1 . (17)
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For the norm minimization we take

∆Mj = zMj

[
kxH + xkH − xkHxxH

]
. (18)

Since ∆Mj is Hermitian and kHx is a constant, also ∆M is Hermitian and

(M(λ, µ) + ∆M(λ, µ))x =
m∑
j=1

f̃j(λ, µ)(Mj + ∆Mj)x

= −k +
m∑
j=1

f̃j(λ, µ)zMj
[kxH + xkH − xkHxxH ]x

= −k + k + xkHx− xkHx = 0,

where we have again used Proposition 2.1.
This implies that (M(λ, µ)+∆M(λ, µ))x = 0 and hence x is an eigenvector

corresponding to (λ, µ). From (17) we have that

∆Mj = zMj

[
kxH + xkH − (kHx)xxH

]
+ U1∆Dj,jU

H
1 ,

and using Proposition 2.3 we have ∆Dj,j = −zMj

xHkUH
1 kk

HU1

P 2
. Hence for

the spectral norm we define

∆Ej = ∆Mj −
zMj

xHkPxkk
HPx

P 2
,

where ∆Mj is defined in (18).
If one of the f̃j(λ, µ) is not real, then from

m∑
j=1

f̃j(λ, µ)

wj
wjdj,j = xHk

we obtain 
m∑
j=1

<(f̃j(λ, µ))

wj
wjdj,j

m∑
j=1

=(f̃j(λ, µ))

wj
wjdj,j

 =

[
<(xHk)
=(xHk)

]
,
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which implies that

[
<(f̃1(λ, µ)))

w1

. . .
<(f̃m(λ, µ)))

wm

] w1d1,1
...

wmdm,m

 = <(xHk),

and [
=(f̃1(λ, µ)))

w1

. . .
=(f̃m(λ, µ)))

wm

] w1d1,1
...

wmdm,m

 = =(xHk),

which we write as
<(f̃1(λ, µ)))

w1

. . .
<(f̃m(λ, µ)))

wm
=(f̃1(λ, µ)))

w1

. . .
=(f̃m(λ, µ)))

wm


 w1d1,1

...
wmdm,m

 =

[
<(xHk)
=(xHk)

]
,

and hence,  w1d1,1
...

wmdm,m

 = T+

[
<(xHk)
=(xHk)

]
= t.

Then it follows that

∆Mj = U∆̃MjU
H =

[
x U1

] [ w−1j eTj t
(
zMj

UH
1 k
)H

zMj
UH
1 k ∆Dj,j

] [
x U1

]H
=

[
w−1j xeTj t+ U1zMj

UH
1 k
]
xH +

[
xzMj

(UH
1 k)H + U1∆Dj,j

]
UH
1

= w−1j xeTj tx
H + zMj

U1U
H
1 kx

H + zMj
xkHU1U

H
1 + U1∆Dj,jU

H
1

= w−1j xeTj tx
H + zMj

Pxkx
H + zMj

xkHPx + U1∆Dj,jU
H
1 ,

setting ∆Dj,j = 0.
For the Frobenius norm, the perturbation matrix and the backward error

is then given by

ηSw,2(λ, µ, x,M) =

√√√√ m∑
j=1

w−2j ‖ejt‖22 + 2
‖k‖22 − |kHx|2

Hw−1,2(f̃(λ, µ))2
.
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For the spectral norm, by Proposition 2.3, we have

U1∆Dj,jU
H
1 = −

w−1j eTj tPxkk
HPx

‖k‖22 − |xHk|2

and thus the perturbation matrix and the backward error are given by

∆Ej = ∆Mj −
w−1j eTj tPxkk

HPx

‖k‖22 − |xHk|2
,

and thus

ηSw,2(λ, µ, x,M) =

√√√√ m∑
j=1

w−2j ‖ejt‖22 +
‖k‖22 − |kHx|2

Hw−1,2(f̃(λ, µ))2
.

The relationship between the structured and unstructured backward errors
is the same as in the symmetric and skew-symmetric case, and also the results
in the skew-Hermitian case are analogous and omitted here.

In this section we have demonstrated that the backward errors for Her-
mitian/skew Hermitian nonlinear eigenvalue problems behave analogous as
for the polynomial case, except that the distinction between the real and
complex case for the function evaluation has to be considered.

Corollary 4.3 Let M ∈ Mm(Cn,n) be an Hermitian/skew-Hermitian ma-
trix polynomial of the form (10), let (λ, µ) ∈ R, and let x ∈ Cn be such that
xHx = 1. Then we have the following relations between the structured and
unstructured backward errors for an approximate eigenpair of M.

i) ηSw,2(λ, µ, x,M) = ηw,2(λ, µ, x,M), if f̃j(λ, µ) ∈ R for 0 ≤ j ≤ m,

ii) ηSw,2(λ, µ, x,M) = ηw,2(λ, µ, x,M), if f̃j(λ, µ) ∈ ıR for 0 ≤ j ≤ m,

iii) ηSw,2(λ, µ, x,M) ≤ ηw,2(λ, µ, x,M), otherwise, if Hw−1,2(f̃(λ, µ))‖T+‖ ≤
1.

iv) ηSw,F (λ, µ, x,M) ≤
√

2ηw,2(λ, µ, x,M), if f̃j(λ, µ) ∈ R for 0 ≤ j ≤ m,

v) ηSw,F (λ, µ, x,M) ≤
√

2ηw,2(λ, µ, x,M), otherwise, if Hw−1,2(f̃(λ, µ))‖T+‖ ≤√
2.
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Proof. By Theorem 4.2, we have

ηSw,F (λ, µ, x,M) =

√√√√ m∑
j=0

∣∣∣∣ tjwj
∣∣∣∣2 + 2

‖k‖22 − |xHk|2

Hw−1,2(f̃(λ, µ))2

≤

√
‖T+‖|xHk|2 − 2

|xHk|2

Hw−1,2(f̃(λ, µ))2
+ 2

‖k‖2

Hw−1,2(f̃(λ, µ))2

=

√√√√|xHk|2 [‖T+‖2 − 2

Hw−1,2(f̃(λ, µ))2

]
+ 2

‖k‖2

Hw−1,2(f̃(λ, µ))2

≤
√

2ηw,2(λ, µ, x,M)

if Hw−1,2(f̃(λ, µ))‖T+‖ ≤
√

2, where
∑m

j=0 |tj|2 = ‖t‖2 = |xHk|2‖T+‖2 using
(16). The other results follow from Theorem 4.2.

We illustrate the results with some examples.

Example 4.4 Consider the delay differential equation ẋ(t) = A1x(t)+A2x1(t−
τ1), where

A1 =

[
−5 1 + i

1− i −6

]
, A2 =

[
−2 4
4 −1

]
,

the delay is τ1 = 1000, and we setM(λ) = λI−A1−A2e
−λτ1 . The coefficient

matrices A1, A2 are Hermitian and we have the following backward errors.
If λ ∈ R such that f̃j(λ) ∈ R then we obtain

λ η2(λ, x,M) ηS2 (λ, x,M) ηSF (λ, x,L)
0.3 0.3703 0.3703 0.5104
3 0.9000 0.9000 0.9074
10 0.9780 0.9780 0.9787
10−5 140.5133 140.5133 168.3081

If λ ∈ C such that f̃j(λ) ∈ C then we obtain

λ η2(λ, x,M) ηS2 (λ, x,M) ηSF (λ, x,L)
20 + 3i 0.9903 1.0158 1.0158
3 + 5i 0.9725 1.0176 1.0176
0.3 + 10i 0.9953 1.0163 1.0163
3i 60.279 112.5229 112.5229

24



Example 4.5 Consider the rational eigenvalue problem in homogeneous
form (

µA0 + λA1 +
λµ

µ− λ
A2

)
x = 0,

with Hermitian coefficients

A0 =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 , A1 =

 −149 −50i −154i+ 1
50i 7 4 + i

154i+ 1 4− i 1

 ,
A2 =

 1 1 + i 2i
1− i 2 3i
−2i −3i 2

 .
If (λ, µ) ∈ C2\{0} such that f̃j(λ, µ) ∈ R, then we obtain the backward errors

(λ, µ) η2(λ, µ,M) ηS2 (λ, µ,M) ηSF (λ, µ,L)
(2i, 3i) 55.7863 55.7863 66.4099
(0, 2) 0.4076 0.4076 0.5483
(4, 3) 62.8229 62.8229 75.6904
(4, 0) 200.0725 200.0725 239.7038

If (λ, µ) ∈ C2 \ {0} such that f̃j(λ, µ) ∈ C \ R then we obtain

(λ, µ) η2(λ, µ,M) ηS2 (λ, µ,M) ηSF (λ, µ,L)
(0.1 + 0.2i,−0.3 + 0.9i) 48.0418 89.9193 89.9193
(2− 3i,−4 + 3i) 110.4397 159.6463 159.6463
(−2− 5i, 3 + 7i) 109.2312 159.4161 159.4161

5 Pseudospectra for nonlinear eigenvalue prob-

lems

Pseudospectra are well studied for matrices, matrix pencils, and matrix poly-
nomials, see e.g., [3, 4, 5, 6, 19, 24, 29, 30, 31, 32, 39, 46, 48], and the references
therein. In this section we will discuss the determination of pseudospectra
for general nonlinear eigenvalue problems such as those associated with the
nonlinear function (1) in homogeneous form.

Example 5.1 Consider the use of pseudospectra in the stability analysis of
delay differential-algebraic equations from [39]. There the spectral properties
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of Q(λ) = λM1 + M2 + M3e
−λτ are studied, with coefficient matrices M1 =

I,M2,M3 ∈ Rn×n and a delay term τ ≥ 0. The associated pseudospectrum
under perturbations in M2,M3 was defined as

Λε,w(M) := {λ ∈ C : (M(λ) + ∆M(λ))x = 0 for somex 6= 0

and ∆M(λ) = ∆M2 + ∆M3e
−λτ with ‖∆Mi‖ ≤ αi, i = 2, 3}.

Thus, as in our analysis of the backward errors in the previous section, the
perturbations are only associated with the coefficients.

It is well known that structured pseudospectra may behave differently than
unstructured ones, see [9, 29, 30, 31, 32] for the case of matrix polynomials
with even or palindromic structure. Here we discuss pseudospectra for struc-
tured nonlinear eigenvalue problems of the form (10), where the coefficients
are either symmetric, skew-symmetric, Hermitian, or skew-Hermitian and we
consider perturbed problems of the form (9), where we again assume that
the perturbations in the functions fj are known or can be bounded, so that
we are dealing with known perturbed functions f̃j, j = 1, . . . ,m. Then for
q ∈ {2, F} we define the pseudospectra and structured pseudospectra

Λε,w,q(M) := {(λ, µ) ∈ R : det((M + ∆M)f̃(λ, µ)) = 0 with

∆M ∈Mm(Cn×n) and |||∆M |||w,q ≤ ε}, (19)

ΛS
ε,w,q(M) := {(λ, µ) ∈ R : det((M+ ∆M)f̃(λ, µ)) = 0 with

∆M ∈MS
m(Cn×n) and |||∆M |||w,q ≤ ε}, (20)

respectively, where S denotes again the considered structure class for the
coefficients.

Consider a structured eigenvalue problem of the form (1). Then for a given
value (λ, µ) ∈ R that is not a pole of any of the functions f̃j, j = 1, . . . ,m,
the structured distance to a given eigenvalue in spectral norm is defined as

ηSw,2(λ, µ,M)

:= min{|||∆M |||w.2 : ∆M ∈MS
m(Cn×n) : det((M + ∆M)f̃(λ, µ)) = 0}.

This means that the structured distance is equal to the norm of the backward
error, i.e., we have

ηSw,2(λ, µ,M) =
‖M(λ, µ)x‖

Hw−1,2(f̃(λ, µ))
=
‖M(λ, µ)−1‖−1

Hw−1,2(f̃(λ, µ))
. (21)

As usual, the ε-pseudospectrum can be characterized by η.
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Proposition 5.2 Consider a structured eigenvalue problem of the form (10)
with M∈MS

m(Cn×n). Then the structured ε-pseudospectrum with respect to
the spectral norm is given by

ΛS
ε,w(M) = {(c, s) ∈ R : ηSw,2(c, s,M) ≤ ε}.

Proof. Let Rε = {(c, s) ∈ R : ηSw,2(c, s,M) ≤ ε}.
We first show that ΛS

ε,w(M) ⊂ Rε. Suppose that (λ, µ) ∈ ΛS
ε,w(M) is not

an eigenvalue of M. If ∆M is chosen such that

M(λ, µ) + ∆M(λ, µ) =M(λ, µ)[1 +M(λ, µ)−1∆M(λ, µ)]

is singular, then we have

1 ≤ ‖M(λ, µ)−1∆M(λ, µ)‖
≤ ‖M(λ, µ)−1‖‖∆M(λ, µ)‖
≤ ‖M(λ, µ)−1‖εHw−1,2(f̃(λ, µ)).

This implies that
‖M(λ, µ)−1‖−1

Hw−1,2(f̃(λ, µ))
≤ ε

and hence (λ, µ) ∈ Rε.
To prove the converse inclusion, let (λ, µ) ∈ Rε be such that it is not an

eigenvalue of M and not a pole of any of the f̃j. Choose y with ‖y‖2 = 1
such that ‖M(λ, µ)−1y‖ = ‖M(λ, µ)−1‖ and set

x =
M(λ, µ)−1y

‖M(λ, µ)−1‖

which clearly has ‖x‖2 = 1. Let W be a matrix with ‖W‖2 = 1 and Wx = y,
and define

E :=
−W

‖M(λ, µ)−1‖
.

Then (M(λ, µ) + E)x = 0, and thus ηSw,2(λ, µ,M) ≤ ε, i.e.,

‖M(λ, µ)−1‖−1

Hw−1,2(f̃(λ, µ))
≤ ε.
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Setting then

∆Mi :==
w−1i sign(f̃i(λ, µ))|f̃i(λ, µ)|

Hw−1,2(f̃(λ, µ))2
E,

we have a desired perturbation, where sign(λ) :=
λ

|λ|2
if λ 6= 0, and sign(λ) :=

0 if λ = 0.
We can also use the relations between the structured and unstructured

backward errors to obtain the relationship between the structured and un-
structured pseudospectra.

Theorem 5.3 For symmetric/skew-symmetric eigenvalue problems of the
form (10) and provided that none of the functions f̃j has a pole at any λ
in the pseudospectral sets, we have

ΛS
ε,w,F (M) ⊂ ΛS√

2ε,w,2
(M), ΛS

ε,w,2(M) = Λε,w,2(M)

To make use of the backward errors for the Hermitian/skew-Hermitian case
we have to make sure that for all those λ in the pseudospectrum for which not
all of the f̃j(λ) are real or purely imaginary, we have that Hw−1,2(f̃(λ)) ≤ 1 in

the case of the spectral norm Hw−1,2(f̃(λ)) ≤
√

2 in the case of the Frobenius
norm, see Theorem 3.5 in [8] in the polynomial case.

Theorem 5.4 For symmetric/skew-symmetric eigenvalue problems of the
form (10) we have the following relations between the structured and un-
structured pseudospectra.

(a) Λε,w,2(M) ⊂ ΛS√
2ε,w,2

(M),

(b) ΛS
ε,w,2(M) = Λε,2(M).

For Hermitian/skew-Hermitian eigenvalue problems of the form (10) we
have the following relations

(c) Λε,w,F (M) ⊂ ΛS√
2ε,2

(M),

(d) ΛS
ε,w,F (M) ⊂ Λ√2ε,w,2(M).

Let us demonstrate these results with an example.
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Example 5.5 Consider the eigenvalue problem in Example 5.1 which has
the form

M(λ) = λM1 +M2 +M3e
−λτ

with coefficients M1 = I,M2,M3. Suppose that only the coefficient M3

of the delay term is perturbed and none of functions f1(λ) = λ, f2(λ) =
1 and f3(λ) = e−λτ , i.e., we choose w1 = w2 = 0, w3 = 1. Then for a
given eigenvalue λ we obtain a perturbation ∆M(λ) = ∆M3e

−λτ . Let E =
−W

∆M(λ)−1
, with W constructed as in Proposition 5.2, then we obtain

∆M3 = e−τλEφ,

where in this case

φ = Hw−1,2(f1(λ), f2(λ), f3(λ)) = |e−λτ |,

and the ε-pseudospectrum is given by all those ∆M3 with norm less or equal
to ε.

6 Conclusion

We have extended the construction of structured backward errors from poly-
nomial eigenvalue problems to nonlinear eigenvalue problems that are linear
in the matrix coefficients and have derived a systematic framework for the
construction of appropriately structured backward errors for the classes of
complex symmetric, complex skew-symmetric, Hermitian, and Skew-Hermitian
problems. The resulting minimal perturbation is unique in the case of Frobe-
nius norm and there are infinitely many solution for the case of spectral norm.
We have used these results to determine structured pseudospectra and have
compared these and also the backward errors to the unstructured case. The
results show no surprise, the relation between structured and unstructured
backward errors and pseudospectra is as in the polynomial case.
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