13,276 research outputs found

    On Projection-Based Model Reduction of Biochemical Networks-- Part II: The Stochastic Case

    Full text link
    In this paper, we consider the problem of model order reduction of stochastic biochemical networks. In particular, we reduce the order of (the number of equations in) the Linear Noise Approximation of the Chemical Master Equation, which is often used to describe biochemical networks. In contrast to other biochemical network reduction methods, the presented one is projection-based. Projection-based methods are powerful tools, but the cost of their use is the loss of physical interpretation of the nodes in the network. In order alleviate this drawback, we employ structured projectors, which means that some nodes in the network will keep their physical interpretation. For many models in engineering, finding structured projectors is not always feasible; however, in the context of biochemical networks it is much more likely as the networks are often (almost) monotonic. To summarise, the method can serve as a trade-off between approximation quality and physical interpretation, which is illustrated on numerical examples.Comment: Submitted to the 53rd CD

    Effects of a nonlinear bath at low temperatures

    Full text link
    We use the numerical flow-equation renormalization method to study a nonlinear bath at low temperatures. The model of our nonlinear bath consists of a single two-level system coupled to a linear oscillator bath. The effects of this nonlinear bath are analyzed by coupling it to a spin, whose relaxational dynamics under the action of the bath is studied by calculating spin-spin correlation functions. As a first result, we derive flow equations for a general four-level system coupled to an oscillator bath, valid at low temperatures. We then treat the two-level system coupled to our nonlinear bath as a special case of the dissipative four-level system. We compare the effects of the nonlinear bath with those obtained using an effective linear bath, and study the differences between the two cases at low temperatures.Comment: 15 pages, 7 figure

    Robust scheduled control of longitudinal flight with handling quality satisfaction

    Get PDF
    Classic flight control systems are still widely used in the industry because of acquired experience and good understanding of their structure. Nevertheless, with more stringent constraints, it becomes difficult to easily fulfil all the criteria with these classic control laws. On the other hand, modern methods can handle many constraints but fail to produce low order controllers. The following methodology proposed in this paper addresses both classic and modern flight control issues, to offer a solution that leverages the strengths of both approaches. First, an H∞ synthesis is performed in order to get controllers which satisfy handling qualities and are robust withrespect to mass and centre of gravity variations. These controllers are then reduced and structured by using robust modal control techniques. In conclusion, a self-scheduling technique is described that will schedule these controllers over the entire flight envelope

    Quantum codewords contradict local realism

    Get PDF
    Quantum codewords are highly entangled combinations of two-state systems. The standard assumptions of local realism lead to logical contradictions similar to those found by Bell, Kochen and Specker, Greenberger, Horne and Zeilinger, and Mermin. The new contradictions have some noteworthy features that did not appear in the older ones.Comment: 9 pages LaTeX, 1 figur

    Monochromatic knots and other unusual electromagnetic disturbances: light localised in 3D

    Get PDF
    We introduce and examine a collection of unusual electromagnetic disturbances. Each of these is an exact, monochromatic solution of Maxwell's equations in free space with looped electric and magnetic field lines of finite extent and a localised appearance in all three spatial dimensions. Included are the first explicit examples of monochromatic electromagnetic knots. We also consider the generation of our unusual electromagnetic disturbances in the laboratory, at both low and high frequencies, and highlight possible directions for future research, including the use of unusual electromagnetic disturbances as the basis of a new form of three-dimensional display

    Structured Deformations of Continua: Theory and Applications

    Full text link
    The scope of this contribution is to present an overview of the theory of structured deformations of continua, together with some applications. Structured deformations aim at being a unified theory in which elastic and plastic behaviours, as well as fractures and defects can be described in a single setting. Since its introduction in the scientific community of rational mechanicists (Del Piero-Owen, ARMA 1993), the theory has been put in the framework of variational calculus (Choksi-Fonseca, ARMA 1997), thus allowing for solution of problems via energy minimization. Some background, three problems and a discussion on future directions are presented.Comment: 11 pages, 1 figure, 1 diagram. Submitted to the Proceedings volume of the conference CoMFoS1
    corecore