18 research outputs found

    Deep Contrast Learning for Salient Object Detection

    Get PDF
    Salient object detection has recently witnessed substantial progress due to powerful features extracted using deep convolutional neural networks (CNNs). However, existing CNN-based methods operate at the patch level instead of the pixel level. Resulting saliency maps are typically blurry, especially near the boundary of salient objects. Furthermore, image patches are treated as independent samples even when they are overlapping, giving rise to significant redundancy in computation and storage. In this CVPR 2016 paper, we propose an end-to-end deep contrast network to overcome the aforementioned limitations. Our deep network consists of two complementary components, a pixel-level fully convolutional stream and a segment-wise spatial pooling stream. The first stream directly produces a saliency map with pixel-level accuracy from an input image. The second stream extracts segment-wise features very efficiently, and better models saliency discontinuities along object boundaries. Finally, a fully connected CRF model can be optionally incorporated to improve spatial coherence and contour localization in the fused result from these two streams. Experimental results demonstrate that our deep model significantly improves the state of the art.Comment: To appear in CVPR 201

    BASS: boundary-aware superpixel segmentation

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We propose a new superpixel algorithm based on exploiting the boundary information of an image, as objects in images can generally be described by their boundaries. Our proposed approach initially estimates the boundaries and uses them to place superpixel seeds in the areas in which they are more dense. Afterwards, we minimize an energy function in order to expand the seeds into full superpixels. In addition to standard terms such as color consistency and compactness, we propose using the geodesic distance which concentrates small superpixels in regions of the image with more information, while letting larger superpixels cover more homogeneous regions. By both improving the initialization using the boundaries and coherency of the superpixels with geodesic distances, we are able to maintain the coherency of the image structure with fewer superpixels than other approaches. We show the resulting algorithm to yield smaller Variation of Information metrics in seven different datasets while maintaining Undersegmentation Error values similar to the state-of-the-art methods.Peer ReviewedPostprint (author's final draft

    Content-sensitive superpixel generation with boundary adjustment.

    Get PDF
    Superpixel segmentation has become a crucial tool in many image processing and computer vision applications. In this paper, a novel content-sensitive superpixel generation algorithm with boundary adjustment is proposed. First, the image local entropy was used to measure the amount of information in the image, and the amount of information was evenly distributed to each seed. It placed more seeds to achieve the lower under-segmentation in content-dense regions, and placed the fewer seeds to increase computational efficiency in content-sparse regions. Second, the Prim algorithm was adopted to generate uniform superpixels efficiently. Third, a boundary adjustment strategy with the adaptive distance further optimized the superpixels to improve the performance of the superpixel. Experimental results on the Berkeley Segmentation Database show that our method outperforms competing methods under evaluation metrics

    Image partitioning into convex polygons

    Get PDF
    International audienceThe over-segmentation of images into atomic regions has become a standard and powerful tool in Vision. Traditional superpixel methods, that operate at the pixel level, cannot directly capture the geometric information disseminated into the images. We propose an alternative to these methods by operating at the level of geometric shapes. Our algorithm partitions images into convex polygons. It presents several interesting properties in terms of geometric guarantees , region compactness and scalability. The overall strategy consists in building a Voronoi diagram that conforms to preliminarily detected line-segments, before homogenizing the partition by spatial point process distributed over the image gradient. Our method is particularly adapted to images with strong geometric signatures, typically man-made objects and environments. We show the potential of our approach with experiments on large-scale images and comparisons with state-of-the-art superpixel methods
    corecore