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Abstract: Superpixel segmentation has become a crucial tool in many image processing and computer
vision applications. In this paper, a novel content-sensitive superpixel generation algorithm with
boundary adjustment is proposed. First, the image local entropy was used to measure the amount
of information in the image, and the amount of information was evenly distributed to each seed. It
placed more seeds to achieve the lower under-segmentation in content-dense regions, and placed
the fewer seeds to increase computational efficiency in content-sparse regions. Second, the Prim
algorithm was adopted to generate uniform superpixels efficiently. Third, a boundary adjustment
strategy with the adaptive distance further optimized the superpixels to improve the performance of
the superpixel. Experimental results on the Berkeley Segmentation Database show that our method
outperforms competing methods under evaluation metrics.

Keywords: content-sensitive; superpixel; boundary adjustment

1. Introduction

Dividing an image into several simple connected regions with perceptual meanings is called
superpixels. Superpixels can represent images more concisely and efficiently than pixels, which can
significantly reduce the complexity of subsequent image processing. After the concept of superpixels
was proposed by Ren and Malik [1] in 2003, the simplified image expression became a key step in many
computer vision tasks, such as segmentation [2–6], saliency detection [7–9], object recognition [10,11],
modelling [12,13], 3D reconstruction [14], and other vision tasks [15–17]. For these applications, the
high-quality superpixels are desired to meet the following properties:

1. Each superpixel is a simple single connected area with the regular shape.
2. Superpixels should adhere well to the image boundaries and pixels inside the superpixels should

have homologous characteristics.
3. The density of superpixels should be adaptive to local image content.
4. The superpixels algorithms should be fast to compute and memory efficient.

The superpixel segmentation algorithms can be roughly divided into two categories: Graph-based
methods and clustering-based methods. Graph-based methods treat each pixel as a vertex in the graph.
The similarity between adjacent pixels is considered as the weight of the edge. The normalized cut
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(N-cut) algorithm [18] recursively partitions the pixel graph using contour and texture information
in the image. Felzenszwalb and Huttenlocher [19] proposed a superpixel generation method based
on the minimum spanning tree (FH). Moore et al. [20] generated superpixels (SL) by searching the
minimum path from the horizontal and vertical directions. Veksler et al. [21] generated superpixels
(Graph Cut) by half-overlapping square patches of the same size covered on the image. Liu et al. [22]
presented a graph-based approach (ERS), which combines the entropy rate of a random walk with
and a balancing function for superpixel segmentation. SEEDS [23] generates superpixels by iteratively
modifying the initial approximate boundaries of superpixels according to the energy function.

The clustering-based methods define a distance measure to evaluate the similarity between
pixels and generate superpixels by iteratively assigning pixels to the most similar seeds until some
convergence criteria are reached. TurboPixels [24] is a geometric flow method (TP), which regularly
places the seeds on images and grows the superpixels by level-set. This method can make the size of
superpixels uniform, but it consumes more time than other superpixel methods.

Zeng et al. [25] proposed structure-sensitive superpixels (SSS) according to the geodesic distance
computed from geometric flows. SSS can effectively describe the nonhomogenous features in images
by the superpixel size. However, the computational cost of SSS is even higher than that of TP.

Achanta et al. [26] proposed an algorithm, simple linear iterative clustering (SLIC), to generate
superpixels. SLIC uniformly places the initial cluster centers on the geometric center of the regular
grids. By limiting the search range of the k-means algorithm, the computational complexity of the
SLIC is greatly reduced. To further improve the performance of SLIC, Achanta and Susstrunk [27]
proposed simple non-iterative clustering (SNIC) to compute superpixels with one iteration.

Liu et al. [28] proposed manifold SLIC (MSLIC), which expands SLIC to generate content-sensitive
superpixels. MSLIC maps a five-dimensional image space to a two-dimensional manifold for computing
restricted centroidal Voronoi tessellation under the Euclidean metric. As an improvement of MSLIC, the
authors proposed intrinsic manifold SLIC [29] (IMSLIC) to compute a centroidal Voronoi tessellation
under the geodesic distance instead of Euclidean distance on the image manifold.

Shen et al. [30] presented the lazy random walk (LRW) method to evaluate the probabilities
between a seed and its neighbor pixels. The authors [31] also proposed a real-time superpixel
segmentation method (DBSCAN) to apply density-based spatial clustering. Small initial superpixels
are further merged with adjacent superpixels to ensure connected superpixels.

Li and Chen [32] proposed the linear spectral clustering (LSC) to generate superpixels based on
simple k-means clustering. The algorithm maps a five-dimensional color space into a ten-dimensional
space, resulting in superpixels with high boundary adherence.

All the above clustering-based methods usually consist of two steps: (1) Regular initialization of
seeds to generate superpixel, and (2) update seeds to the center of mass. The results of this algorithm
depend on the initial position of seeds, and the seed regular initialization ignores the content sensitivity.
To address this issue, we propose a novel superpixel segmentation algorithm, which adopts the
image local entropy and the boundary adjustment strategy to generate superpixels. In summary, the
contribution of this paper includes the following three respects:

1. The seeds initialized by most cluster-based superpixel algorithms are spatially uniform. Our
method introduces image entropy at seeds sampling, which aims at generating content-sensitive
superpixels to improve the accuracy of superpixel segmentation. The image local entropy
can well measure the content sensitivity of the image and can initialize the seeds at a lower
computational cost.

2. We used boundary adjustment to optimize superpixels. Adaptive boundary adjustment can
generate regular superpixels in sparse content areas and superpixels with good boundary
adherence in dense content areas, and the boundary adjustment can quickly converge.

3. The proposed algorithm was evaluated on the Berkeley Segmentation Database (BSDS 500) [33].
Compared with other five methods, the algorithm achieved better segmentation accuracy while
ensuring superpixel compactness.



Appl. Sci. 2020, 10, 3150 3 of 16

The rest of the paper is organized as follows. The Section 2 introduces our method and analyzes
the parameters in detail. The experimental results, compared with the five representative methods,
are shown in Section 3. Experimental results are discussed in Section 4. In Section 5, we show the
foreground segmentation performance of the superpixel algorithm proposed in contour closure. Finally,
a brief summary is made in Section 6.

2. Materials and Methods

This paper develops a novel method for generating content-sensitive superpixels, which improves
the performance of segmentation algorithms. The proposed algorithm has three phases. The first
phase is seed sampling for adaptive image content. The second phase is clustering superpixels based
on the minimum spanning tree algorithm. The third phase is the boundary adjustment phase, in which
the distance measure of adaptive weights is adopted to improve the segmentation quality.

2.1. Seed Sampling Strategy

Any natural image contains a lot of uneven image information. The change in the local color
intensity of the image reflects the change in the amount of local information. Therefore, it is but natural
to place more seeds in content-dense regions of the image and to place fewer seeds in content-sparse
regions of the image. However, the uniformity of seeds is also strongly important for the compactness
of superpixels. Then, the proposed seeds distribution strategy based on image local entropy achieved
a balance between the content sensitivity and uniformity of seeds. The heterogeneity of each pixel was
captured using Normalized Shannon Entropy. The entropy operator calculates the entropy of the pixel
value in the neighbor center. Let the pixel gray values in the center and the N neighbor pixels be a0, a1,
a2, . . . , aN, respectively. The entropy operator is given in Table 1.

Table 1. Entropy operator.

H=−
N∑

i=0
Pi log Pi/log(N + 1)

Pi = ai/
N∑

j=0
a j

The entropy H was normalized so that H ∈ [0, 1]. For color images in the CIELAB color space

c =
[

l a b
]T

, the image local entropy is defined as

H = qlHl + qaHa + qbHb (1)

where 
ql = l/(l + a + b)
qa = a/(l + a + b)
qb = b/(l + a + b)

(2)

Both brightness information and tone information were used to measure the local entropy carried
by natural color images. Therefore, when the brightness or the color tone of the region changed greatly,
the entropy value of the color image was small. The part of the image should contain more information
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when the color intensity of the part of the image changes drastically, and vice versa. For neighborhood
center i, the local information of each pixel I(i) is defined as

I(i) = ω log(1 + (1−H) × 10γ) (3)

where ω and γ are scaling parameters.
We outline seed sampling strategy in Algorithm 1. Different from the placement method of simple

regular grids seeds [26] and two-level quad-tree split-up seeds [25], the proposed approach considered
the local information of the image in the process of placing seeds. In order to make each superpixel
contain an approximate amount of image information, the information interval was s =

∑n
i=1 I(i)/k,

where n is the number of pixels in the image and k is the desired number of superpixels. The images
were scanned from left to right and from top to bottom, and the pixels were added that were four- or
eight-connected to the currently growing region. When the scanned pixels reached the information

interval, the seed was placed. For an initial superpixel Si, its position center xi =
[

xi yi
]T

is

xi =

∫
x∈Si

xdx∫
x∈Si

1dx
, yi =

∫
y∈Si

ydy∫
y∈Si

1dy
, (4)

Algorithm 1. Seed sampling strategy

Input: An image I of n pixels, the desired number of superpixels k, and the parameters γ and ω
Output: k seeds of the image I
Calculate the local information of each pixel I(i)
Calculate information interval s =

∑n
i=1 I(i)/k of image I

for each pixel pi do
if the pixel is not scanned then

Store pi as region Si
for each connected neighbor pj of Si do

if the pixel is not scanned then
I(i)← I(i) + I( j)
xi ← xi + x j
yi ← yi + y j

Add pj to region Si
if I(i) > s then

break
end if

end if
end for

end if
Place seed using Equation (4)

end for

2.2. Minimum Spanning Tree Clustering

An image can be converted to an undirected graph G = (V,E), whose pixels in the image v ∈ V
are the vertices and the value of each edge ei j =

(
vi, v j

)
evaluates the similarity between the two vertices

e ∈ E ⊆ V×V. Let k be the number of superpixels to be divided, the superpixel segmentation task is
broken up the undirected graph G into k disjoint subgraphs G′ = (V′,E′), whereV′ ⊆ V and E′ ⊆ E.

The proposed algorithm is a kind of bottom-up pixel aggregation method, which grows regions
based on the Prim method [34]. The Prim algorithm is a greedy algorithm that finds the minimum
spanning tree for a weighted undirected graph. Suppose a graph has n vertices, and the goal is to
aggregate the vertices into a forest with k trees. Starting from the initial seeds, the algorithm adds the
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least cost connection from the tree to the vertex in each step. Similar to SLIC [26], a distance measure

was adopted in five-dimensional space. In the spatial space x =
[

x y
]T

and CIELAB color space

c =
[

l a b
]T

, the distance of two vertices v1 and v2 is defined as

D(v1, v2) =

√
λ2
‖x1 − x2‖

2
2

N2
x

+ ‖c1 − c2‖
2
2 (5)

where Nx is a normalization parameter. For an image of n pixels, the value of Nx is set to be
√

n/k. The
value of λ is set by the user. λ weighs the relative importance of the color distance term and spatial
distance term. The larger the λ value is, the more regular the generated superpixels are. The smaller
the λ value is, the boundary adherence better the generated superpixels are.

The Prim algorithm only considers the distance between two vertices on the tree border during
the aggregation process. This metric is extremely sensitive to noise. The average attributes of the tree
are used to calculate the distance, which not only simplifies the calculation of the shortest path distance
in the neighbor, but also improves the robustness of the Prim algorithm. After running the Prim
algorithm, k trees representing k superpixels are generated. For a superpixel Si, its average attribute
Ci =

[
xi ci

]
is given by

Ci =

∫
v∈Si

vdv∫
v∈Si

1dv
(6)

The average attribute replaces the seed to calculate the distance. Figure 1 illustrates this aggregation
process of superpixels. The process of minimum spanning tree clustering is summarized in Algorithm 2.

Algorithm 2. Minimum Spanning Tree Clustering

Input: An image I of n pixels, k initial locations xi generated in Algorithm 1 and the weight parameter λ
Output: Initial Superpixel label map L
Initialize L[:]← −1
Initialize Ci =

[
xi ci

]
by extracting the features of the initial locations xi

for each centroid Ci do
Vertex v←

{
Ci k 0

}
Push v on priority queue Q

end for
while Q , ∅ do

remove vi from the priority queue Q
L[vi] = ki

Update the centroid Ci using Equation (6)
for Each connected neighbor vj of vi do

Calculated distance of vj and vi using Equation (5)
Create the Vertex v j ←

{
C j ki di j

}
if L[:]← −1 then

Push vj on Q
end if

end for
end while
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Figure 1. Illustration of the aggregation process of superpixels. The vertices represent pixels and the
edges represent similarities. (a)The vertex 15 is the nearest neighbor of the tree (red vertex 11), (b) the
tree aggregates the nearest neighbor, (c) update the average attribute of the tree, (d) expand the search
scope of the tree and find the next nearest neighbor(vertex 9).

2.3. Boundary Adjustment

The preliminary segmentation results were formed at one time and further optimization was
required. In Figure 2, the shape of the superpixel was not regular enough, especially in the content-sparse
region. There were several under-segmentation errors in the area pointed by the red arrow in the
image. It can be seen that boundary adjustment significantly improved the compactness and boundary
adherence of superpixels.

Figure 2. Image segmentation results with 400 superpixels. (a) Superpixel segmentation results after
minimum spanning tree clustering, (b) superpixel segmentation results after boundary adjustment.

The boundary pixels of the initial superpixels were allocated to obtain better compactness and
boundary adherence. Among pixels connected to Si, the pixels that do not belong to Si are boundary
pixels. For each boundary pixel, calculate the distance between the boundary pixel and the adjacent
superpixel, and assign the boundary pixel to the superpixel which is nearest to it. Boundary adjustment
is an iterative process. The iteration is terminated when the set number of iterations is reached.

In the distance Equation (5), the color distance term affects the adherence of superpixels boundary,
and spatial distance term affects the compactness of superpixels. To enhance the content sensitivity of
superpixels, we define the new distance measurement as follows:

D′(v1, v2) =

√
λ2
‖x1 − x2‖

2
2

N2
x

+ ‖c1 − c2‖
2
2 · I(i) (7)

When the value I(i) is higher, the color distance is more considered. When the value I(i) is lower,
the spatial distances should be more considered.
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Boundary adjustment does not guarantee the superpixel connectivity. In the procedure, a
superpixel may be split into several unconnected sub-superpixels. Connectivity is taken into account
of the procedure of boundary adjustment and additional steps are not required. For too small
sub-superpixels, they will merge with the nearest superpixel. The pseudo code of boundary adjustment
is presented Algorithm 3.

Algorithm 3. Boundary adjustment

Input: Initial Superpixel label map L and the maximum number of iterations Maxiter
Output: Optimized Superpixel label map L
While iter < Maxiter do

for each superpixel Si do
for each boundary vertex vi do

for Each connected neighbor vj of vi that are not in Si do
Get the superpixel Sj which vj belongs to
Compute D′(v j, C j) and D′(v j, Ci) using Equation (7)
if D′(v j, Ci)<D(v j, C j) then

L[v j] = ki
Update Ci and Cj using Equation (6)
Update the boundary vertices

end if
end for

end for
end for

end while

For an image with n pixels, it is obvious that the complexity of the image local entropy and
the seed sampling strategy are О(n). In the minimum spanning tree clustering phase, the number
of pixels in the priority queue is much smaller than n. Thereby, the impact of priority queues on
computational complexity is not very obvious. In the boundary adjustment stage, the computational
cost in each iteration is О(nB), in which nB is the number of boundary pixels. In practice, nB � n. In
the comprehensive analysis, the proposed algorithm is of linear complexity О(n).

2.4. Datasets and Performance Metrics

We adopted the commonly used evaluation metrics in the literature of superpixel segmentation to
evaluate superpixel segmentation algorithms, including boundary recall (BR), achievable segmentation
accuracy (ASA), and under-segmentation error (USE). The BSDS 500 [33] consisted of 500 images
with manually labeled ground truth segmentations. In the following experiments, the methods were
evaluated using the average performance metrics of five hundred images in the BSDS 500 [33].

Boundary recall (BR) measures the fraction of the ground truth boundary identifications. A high
BR represents the better boundary adherence with respect to the ground truth boundaries. Given a
ground truth boundary sets B(g) and the superpixel boundary sets B(s), then BR is defined as:

BR =
TP(B(g), B(s))

TP(B(g), B(s)) + FN(B(g), B(s))
(8)

Let FN (B(g), B(s)) and TP (B(g), B(s)) be the number of false negative and true positive boundary
pixels. B(s) is matched to B(g) within a local neighbor with size (2r + 1) × (2r + 1). In practice, r is set
to 1.
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Achievable segmentation accuracy (ASA) computes the upper bound of accuracy using superpixels
as preprocessing step. Denote a ground truth segmentation of an image as {Gi|i = 1, 2, · · · , M} and a
superpixel segmentation as {Sl|l = 1, 2, · · · , K}. The ASA metric is defined as follows:

ASA =

∑
Sl

maxGi {|Sl ∩Gi|}∑
Gi

|Gi|
(9)

where |.| is the number of a superpixel in pixel. In general, a high ASA demonstrates that superpixels
match the objects well in the image.

Under-segmentation error (USE) measures the “leakage” of superpixels from the ground truth
boundaries, which is calculated by:

USE =
1
n

∑
Sl

∣∣∣Sl − argmaxGi |Sl ∩Gi|
∣∣∣ (10)

where n is the total number of pixels in the image. Each superpixel was assigned to the ground truth
segments with the largest overlap, and only the “leakage” with respect to other ground truth segments
was considered. Therefore, USE implicitly also measures boundary adherence. A lower USE refers to
that superpixels overlap with a ground truth segmentation more accurately.

2.5. Parameter Selection

In the proposed method, γ, ω, λ, and Maxiter should be set in advance. The following experiments
use various values to investigate the parameters.

The measure of image information contains two parameters, γ and ω. γ is used to adjust the
uniformity and content sensitivity of the seeds. As shown in Figure 3, with the increasing values of γ,
the value of performance metrics changes significantly because small γ values imply the seeds are too
sensitive to the image content and concentrated in complex areas while ignoring other areas. When γ
becomes too large, the distribution of seeds tends to regular grid seeds, and the content sensitivity
is ignored. ω is used to adjust the proportion of the color term in Equation (7). In practice, we truly
use their product, p = ω · γ. Approximately, the values of I(i) fall in the interval [0, p]. As shown in
Figure 4, when p increases, more detailed information is considered and the resulting superpixels are
more irregular.

Figure 3. The performance metrics of our approach with different γ values.



Appl. Sci. 2020, 10, 3150 9 of 16

Figure 4. Superpixel segmentation results with different p values.

λ represents the weight parameters of the distance measure in the stage of minimum spanning
tree clustering. Particularly, when λ→∞, the generated superpixels are regularly grid only related to
the position of the initial seeds. When λ = 0, the pixels with similar colors are clustered to generate
irregular superpixels. The trend is shown in Figure 5. Figure 6 shows the average values of BR, ASA,
and USE on the BSDS 500 for different λ values when K = 400. Overall, the performance metrics
becomes worse as the value of λ increases.

Figure 5. Superpixel segmentation results with different λ values.
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Figure 6. The performance metrics of our approach with different λ values at k = 400.

The number of iterations Maxiter can balance time cost and performance. The metrics with Maxiter
are shown in Figure 7. It is easy to find that our algorithm can quickly converge after two iterations.
More iterations will only increase time consumption. Also shown in Figure 2, the superpixels became
more compact after iterations.

Figure 7. The performance metrics of our approach for different Maxiter values.

From the discussion above, we select γ = 6 and Maxiter = 3, where achieve the best performance.
Considering the accuracy and compactness of superpixels, we empirically select λ = 20 and p = 3.

3. Results

The proposed algorithm was implemented in C++ and tested on a PC with an Intel i5-8300H
CPU (2.30 GHz) and 8GB RAM. The performance of the proposed algorithm was compared with
the five representative superpixel generation algorithms, including SLIC [26], SNIC [27], ERS [22],
LSC [32], and FH [19]. We used the implementations available online for all other methods. To
ensure segmentation performance, all algorithms were run on the recommended parameters. The
comparison experiment results on BSDS 500 [33] are shown in Figure 8. As a preprocessing step for
image processing, the time cost was also an important indicator. In Figure 8d, we also compared the
efficiency in the average running time per image. Table 2 presents the mean and standard deviation
performance metrics at k = 400. A visual comparison is displayed in Figure 9.
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Figure 8. Quantitative evaluation of different superpixel segmentation algorithms.

Table 2. Performance metrics of different superpixel segmentation algorithms at k = 400.

BR ASA USE Computational
Complexity

Average Time
Per Image

SLIC [26] 0.863 ± 0.064 0.957 ± 0.021 0.042 ± 0.021 О(n) 0.076 s

SNIC [27] 0.865 ± 0.062 0.955 ± 0.022 0.044 ± 0.022 О(n) 0.070 s

ERS [22] 0.925 ± 0.040 0.954 ± 0.024 0.045 ± 0.024 О(n2 log n) 0.442 s

LSC [32] 0.928 ± 0.040 0.960 ± 0.020 0.039 ± 0.020 О(n) 0.220 s

FH [19] 0.763 ± 0.102 0.921 ± 0.042 0.078 ± 0.042 О(n log n) 0.051 s

Ours 0.931 ± 0.046 0.962 ± 0.020 0.038 ± 0.020 О(n) 0.159s

Bold indicates the best value of the corresponding metric.

A good initialization is essential for superpixel algorithms. In Section 2.1, we propose a seed
sampling strategy different from regular grid initialization, which introduces image entropy into seed
sampling strategy to optimize the content sensitivity of the seed. Furthermore, the content initialization
compares with regular initialization in the proposed method on the entire BSDS 500 dataset. The
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results under the three metrics (i.e., USE, BR, and ASA) are reported in Figure 10, which shows that
our sampling strategy is better than regular grid initialization.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 16 
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4. Discussion

Referring to the plots in Figure 8, our method is superior to the other five methods in terms of
ASA and USE. The LSC, ERS, and our method exhibit high performance on BR. However, our approach
is more competitive at a lower set number of superpixels. As a preprocessing step, generating a lower
number of high-quality superpixels is more helpful for subsequent tasks. From Figure 8 and Table 2, it
can be seen that the proposed method is comparable to the other five representative methods in terms
of boundary adherence.
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Figure 9 shows the visual results of superpixel segmentation using these algorithms. Enlarge
the local segmentation results for detailed inspection. Visually, our method had the most satisfactory
segmentation results for different types of images. SLIC, SNIC, and our method showed the best
compactness. However, compared with the proposed algorithm, SLIC and SNIC had weaker boundary
adherence. The boundary adherence of ERS was very competitive, but the compactness of ERS
was not satisfactory. LSC produced competitive results and performed well in compactness and
boundary adherence. LSC introduces global information to generate superpixels, which makes it
requires 20 iterations. From Figure 8d, LSC took longer to run than our method. In addition, our
method can exceed the performance of LSC by adjusting parameters, but it sacrifices compactness.
Superpixels generated by FH and the proposed method exhibited content sensitivity. Due to the
lack of compactness constraints, the superpixels produced by FH were extremely irregular and
under-segmented in content-rich areas. The results show that the algorithm achieves good boundary
adherence while ensuring good compactness.

5. Application to Image Contour Closure

We investigated the effect of segmentation using different superpixels in image contour closure
applications. Superpixel is a preprocessing step to reduce the complexity of subsequent image
tasks. Levinshtein et al. [6] proposed an energy framework to search for a subset of superpixels
to obtain the contour of strong edge support in an image. The energy framework proposed by
Levinshtein et al. was used to compare six superpixel algorithms. The energy framework was
applied to the Weizmann Segmentation Evaluation Database (WSED) [35], which consists of 100
images with human-annotated ground truth segmentations for each image. The average F-measure,
precision, and recall are summarized in Table 3. Figure 11 also shows the qualitative results of the
four examples. Both quantitative and qualitative results show that the proposed method has good
foreground segmentation performance.

Figure 11. Visual comparison of contour closure results on four examples in Weizmann Segmentation
Evaluation Database (WSED). The superpixel boundaries are shown in green, and the closure contours
are shown in red.
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Table 3. Performance metrics of the framework on WSED.

SLIC [26] SNIC [27] ERS [22] LSC [32] FH [19] Ours

F-measure 0.820 0.810 0.814 0.816 0.746 0.822

Precision 0.877 0.867 0.838 0.841 0.834 0.871

Recall 0.796 0.795 0.829 0.829 0.745 0.801

6. Conclusions

In this paper, we present a content-sensitive superpixel generation method with boundary
adjustment, which generates compact superpixels that are adapted to image content. Owing to the
uneven distribution of seeds, compared to other seed-based methods, the proposed algorithm is
more sensitive to the content of the image. The approach tends to generate relatively small and
irregular superpixels in complex regions for better boundary adherence, and generates relatively
large regular superpixels in flat regions to improve computational efficiency. Taking advantage of
boundary adjustment, the proposed algorithm provides results can adapt well to structure changes
in natural images. We compared the proposed algorithm with five representative methods on the
BSDS 500 dataset. The experimental results demonstrate that superpixels generated by the proposed
method outperform the five superpixel algorithms in terms of USE, BR, and ASA. In the future, we
will further research the algorithm in a noisy environment. In addition, we plan to apply this approach
to applications that require content-sensitive superpixel algorithms.
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