1,320 research outputs found

    Contextual-based Image Inpainting: Infer, Match, and Translate

    Full text link
    We study the task of image inpainting, which is to fill in the missing region of an incomplete image with plausible contents. To this end, we propose a learning-based approach to generate visually coherent completion given a high-resolution image with missing components. In order to overcome the difficulty to directly learn the distribution of high-dimensional image data, we divide the task into inference and translation as two separate steps and model each step with a deep neural network. We also use simple heuristics to guide the propagation of local textures from the boundary to the hole. We show that, by using such techniques, inpainting reduces to the problem of learning two image-feature translation functions in much smaller space and hence easier to train. We evaluate our method on several public datasets and show that we generate results of better visual quality than previous state-of-the-art methods.Comment: ECCV 2018 camera read

    Virtual restoration of the Ghent altarpiece using crack detection and inpainting

    Get PDF
    In this paper, we present a new method for virtual restoration of digitized paintings, with the special focus on the Ghent Altarpiece (1432), one of Belgium's greatest masterpieces. The goal of the work is to remove cracks from the digitized painting thereby approximating how the painting looked like before ageing for nearly 600 years and aiding art historical and palaeographical analysis. For crack detection, we employ a multiscale morphological approach, which can cope with greatly varying thickness of the cracks as well as with their varying intensities (from dark to the light ones). Due to the content of the painting (with extremely many fine details) and complex type of cracks (including inconsistent whitish clouds around them), the available inpainting methods do not provide satisfactory results on many parts of the painting. We show that patch-based methods outperform pixel-based ones, but leaving still much room for improvements in this application. We propose a new method for candidate patch selection, which can be combined with different patch-based inpainting methods to improve their performance in crack removal. The results demonstrate improved performance, with less artefacts and better preserved fine details
    • …
    corecore