6 research outputs found

    Generalized Integer Partitions, Tilings of Zonotopes and Lattices

    Full text link
    In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of two dimensional zonotopes, using dynamical systems and order theory. We show that the sets of partitions ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of zonotopes, ordered with a simple and classical dynamics, is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical systems exist. These results give a better understanding of the behaviour of tilings of zonotopes with flips and dynamical systems involving partitions.Comment: See http://www.liafa.jussieu.fr/~latapy

    The Lattice structure of Chip Firing Games and Related Models

    Full text link
    In this paper, we study a famous discrete dynamical system, the Chip Firing Game, used as a model in physics, economics and computer science. We use order theory and show that the set of reachable states (i.e. the configuration space) of such a system started in any configuration is a lattice, which implies strong structural properties. The lattice structure of the configuration space of a dynamical system is of great interest since it implies convergence (and more) if the configuration space is finite. If it is infinite, this property implies another kind of convergence: all the configurations reachable from two given configurations are reachable from their infimum. In other words, there is a unique first configuration which is reachable from two given configurations. Moreover, the Chip Firing Game is a very general model, and we show how known models can be encoded as Chip Firing Games, and how some results about them can be deduced from this paper. Finally, we define a new model, which is a generalization of the Chip Firing Game, and about which many interesting questions arise.Comment: See http://www.liafa.jussieu.fr/~latap

    Structure of some sand piles model

    Get PDF
    AbstractSand pile model (SPM) is a simple discrete dynamical system used in physics to represent granular objects. It is deeply related to integer partitions, and many other combinatorics problems, such as tilings or rewriting systems. The evolution of the system started with n stacked grains generates a lattice, denoted by SPM(n). We study here the structure of this lattice. We first explain how it can be constructed, by showing its strong self-similarity property. Then, we define SPM(∞), a natural extension of SPM when one starts with an infinite number of grains. Again, we give an efficient construction algorithm and a coding of this lattice using a self-similar tree. The two approaches give different recursive formulae for |SPM(n)|

    Structure of some sand piles model

    No full text
    Abstract: spm (Sand Pile Model) is a simple discrete dynamical system used in physics to represent granular objects. It is deeply related to integer partitions, and many other combinatorics problems, such as tilings or rewriting systems. The evolution of the system started with n stacked grains generates a lattice, denoted by SPM(n). We study here the structure of this lattice. We first explain how it can be constructed, by showing its strong self-similarity property. Then, we define SPM(∞), a natural extension of spm when one starts with an infinite number of grains. Again, we give an efficient construction algorithm and a coding of this lattice using a self-similar tree. The two approaches give different recursive formulae for |SPM(n)|
    corecore