1,495 research outputs found
Thermochemistry of iron manganese oxide spinels
Oxide melt solution calorimetry has been performed on iron manganese oxide spinels prepared at high temperature. The enthalpy of formation of (MnxFe1−x)3O4 at 298 K from the oxides, tetragonal Mn3O4 (hausmannite) and cubic Fe3O4 (magnetite), is negative from x=0 to x=0.67 and becomes slightly positive for 0.670.6) spinels of intermediate compositions. The enthalpies of formation are discussed in terms of three factors: oxidation–reduction relative to the end-members, cation distribution, and tetragonality. A combination of measured enthalpies and Gibbs free energies of formation in the literature provides entropies of mixing. ΔSmix, consistent with a cation distribution in which all
trivalent manganese is octahedral and all other ions are randomly distributed for x>0.5, but the entropy of mixing appears to be smaller than these predicted values for x<0.4
Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling
Oxygen-carrier materials for chemical-looping with oxygen uncoupling (CLOU) must be capable of taking up and releasing gas-phase O2 at conditions relevant for generation of heat and power. In principle, the capability of a certain material to do so is determined by its thermodynamic properties. This paper provides an overview of the possibility to design feasible oxygen carrier materials from combined oxides, i.e. oxides with crystal structures that include several different cations. Relevant literature is reviewed and the thermodynamic properties and key characteristics of a few selected combined oxide systems are calculated and compared to experimental data. The general challenges and opportunities of the combined oxide concept are discussed. The focus is on materials with manganese as one of its components and the following families of compounds and solid solutions have been considered: (MnyFe1-y)Ox, (MnySi1-y)Ox, CaMnO3-δ,(NiyMn1-y)Ox, (MnyCu1-y)Ox and (MnyMg1-y)Ox. In addition to showing promise from a thermodynamic point of view, reactivity data from experimental investigations suggests that the rate of O2 release can be high for all systems. Thus these combined oxides could also be very suitable for practical application
Spontaneously formed porous and composite materials
In recent years, a number of routes to porous materials have been developed which do not involve the use of pre-formed templates or structure-directing agents. These routes are usually spontaneous, meaning they are thermodynamically downhill. Kinetic control, deriving from slow diffusion of certain species in the solid state, allows metastable porous morphologies rather than dense materials to be obtained. While the porous structures so formed are random, the average architectural features can be well-defined, and the porosity is usually highly interconnected. The routes are applicable to a broad range of functional inorganic materials. Consequently, the porous architectures have uses in energy transduction and storage, chemical sensing, catalysis, and photoelectrochemistry. This is in addition to more straightforward uses deriving from the pore structure, such as in filtration, as a structural material, or as a cell-growth scaffold. In this feature article, some of the methods for the creation of porous materials are described, including shape-conserving routes that lead to hierarchical macro/mesoporous architectures. In some of the preparations, the resulting mesopores are aligned locally with certain crystallographic directions. The coupling between morphology and crystallography provides a macroscopic handle on nanoscale structure. Extension of these routes to create biphasic composite materials are also described
First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition
As our reliance on renewable energy resources increases, so will our need to store this energy in the form of chemical fuels to iron-out peaks and troughs in supply. Sunlight, the most plentiful source of renewable energy, is especially problematic in this regard as it is so diffuse. One way to convert solar irradiation to fuels effectively would be to develop large surface area photo-electrochemical devices that could use sunlight directly to split water into H2 and O2. However, in order to be feasible, such an approach requires that these devices (and their components) are extremely cheap. In this review, we will discuss catalysts for the water oxidation half-reaction of electrochemical water splitting that can be produced by electrodeposition (a technique well suited to large-scale, low-cost applications), and that are based on the comparatively plentiful and inexpensive first row transition metals. Special attention will be paid to the electrodeposition conditions used in the various examples given, and structure-function relationships for electrochemical water oxidation for the materials produced by these techniques will be elucidated
High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides
Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above ~15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications
Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for Methyl-Ethyl-Ketone combustion
Mn3O4, FeMnOx, and FeOx catalysts synthesized via a solvothermal method were employed for catalytic oxidation of methyl−ethyl−ketone (MEK) at low temperature. Mn3O4 with sphere-like morphology exhibited the highest activity for MEK oxidation, over which MEK was completely oxidized to CO2 at 200 °C, and this result can be comparable to typical noble metal loaded catalysts. The activation energy of MEK over Mn3O4 (30.8 kJ/mol) was much lower than that of FeMnOx (41.5 kJ/mol) and FeOx (47.8 kJ/mol). The dominant planes, surface manganese species ratio, surface-absorbed oxygen, and redox capability played important roles in the catalytic activities of catalysts, while no significant correlation was found between specific surface area and MEK removal efficiency. Mn3O4 showed the highest activity,
accounting for abundant oxygen vacancies, low content of surface Mn4+ and strong reducibility. The oxidation of MEK to CO2 via an intermediate of diacetyl is a reaction pathway on Mn3O4 catalyst. Due to high efficiency and low cost, sphere-shaped Mn3O4 is a promising catalyst for VOCs abatement
Thermochemical hydrogen production from water using reducible oxide materials: a critical review
Advanced chemical looping materials for CO2 utilization : a review
: Combining chemical looping with a traditional fuel conversion process yields a promising
technology for low-CO2-emission energy production. Bridged by the cyclic transformation of
a looping material (CO2 carrier or oxygen carrier), a chemical looping process is divided into two
spatially or temporally separated half-cycles. Firstly, the oxygen carrier material is reduced by
fuel, producing power or chemicals. Then, the material is regenerated by an oxidizer. In chemical
looping combustion, a separation-ready CO2 stream is produced, which significantly improves the
CO2 capture efficiency. In chemical looping reforming, CO2 can be used as an oxidizer, resulting
in a novel approach for efficient CO2 utilization through reduction to CO. Recently, the novel
process of catalyst-assisted chemical looping was proposed, aiming at maximized CO2 utilization
via the achievement of deep reduction of the oxygen carrier in the first half-cycle. It makes use of
a bifunctional looping material that combines both catalytic function for efficient fuel conversion
and oxygen storage function for redox cycling. For all of these chemical looping technologies,
the choice of looping materials is crucial for their industrial application. Therefore, current research
is focused on the development of a suitable looping material, which is required to have high
redox activity and stability, and good economic and environmental performance. In this review,
a series of commonly used metal oxide-based materials are firstly compared as looping material
from an industrial-application perspective. The recent advances in the enhancement of the activity
and stability of looping materials are discussed. The focus then proceeds to new findings in the
development of the bifunctional looping materials employed in the emerging catalyst-assisted
chemical looping technology. Among these, the design of core-shell structured Ni-Fe bifunctional
nanomaterials shows great potential for catalyst-assisted chemical looping
- …
