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Abstract – Oxygen-carrier materials for chemical-looping with oxygen uncoupling 

(CLOU) must be capable to take up and release gas-phase O2 at conditions relevant for 

generation of heat and power. In principle, the capability of a certain material to do so is 

determined by its thermodynamic properties. This paper provides an overview of the 

possibility to design feasible oxygen carrier materials from combined oxides, i.e. oxides 

with crystal structures that include several different cations. Relevant literature is 

reviewed and the thermodynamic properties and key characteristics of a few selected 

combined oxide systems are calculated and compared to experimental data. The general 

challenges and opportunities of the combined oxide concept are discussed. The focus is 

on materials with manganese as one of its components and the following families of 

compounds and solid solutions have been considered: (MnyFe1-y)Ox, (MnySi1-y)Ox, 

CaMnO3-δ,(NiyMn1-y)Ox, (MnyCu1-y)Ox and (MnyMg1-y)Ox. 

1 Chemical-looping with oxygen uncoupling  

Chemical-looping combustion (CLC) is an innovative method to oxidize fuels with inherent 

CO2 sequestration. Two separate reactors are used, one air reactor (AR) and one fuel reactor 

(FR). A solid oxygen carrier (MeOx/MeOx-1) performs the task of transporting oxygen 

between the reactors. Direct contact between fuel and air is avoided, see Figure 1.  

The oxygen carrier circulates between the two reactors. In the fuel reactor, it is reduced by the 

fuel, which in turn is oxidized to CO2 and H2O according to reaction (1). In the air reactor, it 

is oxidized to its initial state with O2 from the air according to reaction (2). Combining 

reaction (1) and reaction (2) yields reaction (3), which is complete combustion of the fuel 

with O2.  
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CnHm + (2n+½m) MeOx → nCO2 + (½m)H2O + (2n+½m) MeOx-1   (1) 

MeO1-x + ½O2 → MeOx        (2) 

CnHm + (n+¼m)O2 → nCO2 + (½m)H2O      (3) 

Chemical-looping combustion has several attractive features. The gas from the fuel reactor 

consists essentially of CO2 and H2O so condensation of steam to liquid water is all that is 

needed to obtain almost pure CO2 for sequestration. A feasible design is to use a circulating 

fluidized bed reactor with oxygen-carrier particles as bed material, which is straightforward 

and available technology. Commonly proposed oxygen carrier materials include transition 

metal oxides such as NiO, Fe2O3, CuO or Mn3O4. The progress within the area of has been 

reviewed recently by Adanez et al. [1] and Lyngfelt [2]. 

In reaction (1), it was assumed that the fuel is in gas phase and that it reacts with the oxygen 

carrier in a gas-solid-reaction. However, with some oxygen carrier materials gas-phase O2 can 

be released directly in the fuel reactor according to reaction (4).  

MeOx ↔ MeO1-x + ½O2        (4) 

O2 will be released until equilibrium for reaction (4) is obtained. If there is a fuel present it 

will react directly with released O2 according to reaction (3), which will facilitate further O2 

release until all available fuel is consumed. The reduced oxygen carrier can then be 

recirculated to the air reactor where it is reoxidized according to reaction (2).  

This reaction scheme described above is referred to as chemical-looping with oxygen 

uncoupling (CLOU), see Mattisson et al. [3]. The sum of reactions is identical to the one for 

chemical-looping combustion, but the mechanism by which the fuel is oxidized is different. In 

ordinary chemical-looping combustion, the oxidation of fuel takes place mainly via gas-solids 

reactions. So if the fuel is a solid such as coal, it has to be gasified in order to be able to react 

with the solid oxygen carrier. By contrast, in chemical-looping with oxygen uncoupling, the 

oxidation of the fuel can proceed by direct combustion. Leion et al. [4] have shown that 

oxidation of coke can be orders of magnitude faster using this reaction scheme compared to a 

conventional chemical-looping combustion process which relies on char gasification. 

1.1 Aim of this study 

The aim of this study is to provide an overview of the possibility to design oxygen carrier 

materials from combined oxides, i.e. oxides with structures that include several different 

cations. 
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2 Oxygen carriers for chemical-looping with oxygen uncoupling  

The central requirement for an oxygen-carrier material for chemical-looping with oxygen 

uncoupling is that it should be capable of taking up and releasing gas-phase O2 at conditions 

relevant for char combustion. This capability is dictated by the equilibrium O2 partial pressure 

(pO2) for reaction (4), which is different for different materials and also a function of 

parameters such as temperature and pressure. 

In a real-world facility for power generation with a conventional Clausius-Rankine cycle, the 

O2 concentration in the outlet of the air reactor would preferably be low. High excess air 

reduces the efficiency of the plant and increases costs. In this work it is assumed that the 

highest acceptable O2 concentration in the gas from the air reactor is 5%, i.e. an excess air 

ratio of 20%, which is comparable to what is used in circulating fluidized bed boilers. This 

means that the equilibrium O2 partial pressure for reaction (4) should not be higher than 5% at 

the desired air reactor temperature, else reoxidation will be impossible. Hence calculating this 

temperature (Teq,PO2=5%) provides the maximum air reactor temperature for a certain oxygen 

carrier. 

As for the fuel reactor, high temperature equals a higher partial pressure of O2 according to 

reaction (4) and faster overall reaction kinetics. As will be explained below, oxygen carriers 

for chemical-looping with oxygen uncoupling typically gives slightly exothermic reactions 

with fuel in the fuel reactor. It seems reasonable to assume that heat will be extracted in the 

air reactor to control the temperature here, while the fuel reactor will be allowed operate at 

similar or slightly higher temperature.  

Depending on solids circulation and solids inventory, the O2 release could well be higher than 

what is consumed by the fuel. This would then lead to the presence of oxygen in the gas from 

the fuel reactor. Thus, it can be assumed that operation with oxygen carriers that release 

oxygen will need proper control systems to avoid either excess of oxygen or unconverted fuel 

gas. 

Since the reactions in the fuel reactor typically are exothermic, high solids circulation should 

not be necessary to maintain the overall heat balance. Instead, the minimum solids circulation 

will be determined by the oxygen carrier capacity (R0) which is defined in equation (5), in 

which mox is the weight of the fully oxidized sample and mred is the weight of the fully 

reduced. 

R0 = (mox – mred) / mox         (5) 
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Below is an overview over some binary and ternary oxide systems which have been identified 

as promising for the proposed application. All data and phase diagrams have either been 

calculated with the software FactSage 6.1 using the FToxid database, or in some case been 

taken from identified sources. The results are summarized in section 3 below.  

2.1 Monometallic oxygen carriers 

Although not the focus of this study, it should be mentioned that there are monometallic 

systems which could be feasible for the discussed application. CuO is commonly proposed 

and has been shown to release O2 rapidly via reaction (6) at temperatures in the range of 850-

950°C, see for example Leion et al. [4], Gayán et al. [5], Eyring et al. [6] and Arjmand et al. 

[7]. Further, Mn2O3 could release O2 via reaction (7), but reoxidation is restricted to low 

temperatures where the rate of reaction appears to be too slow to be practically applicable [3]. 

Finally, Co3O4 could release O2 via reaction (8), but this system looks unattractive due to 

unfavourable cost, health and environmental characteristics [3]. The equilibrium O2 partial 

pressure for reactions (6-8) can be found in Figure 2. 

4CuO ↔ 2Cu2O + O2         (6) 

6Mn2O3 ↔ 4Mn3O4 + O2        (7) 

2Co3O4 ↔ 6CoO + O2        (8) 

2.2 (MnyFe1-y)Ox combined oxides 

The ternary system Mn-Fe-O has properties which make it exceptionally interesting for 

oxygen carrier applications. In fact, such oxides have already been proven to be capable of 

releasing considerable amounts of gas phase O2, see Azimi et al. [8, 9, 10], Rydén et al. [11] 

and Shulman et al. [12]. This family of materials is believed to be resistant towards fuel 

impurities such as sulfur and could also be manufactured from cheap and relatively harmless 

raw materials.  

A binary phase diagram of the (MnyFe1-y)Ox system is shown in Figure 3. It can be seen that 

hematite (Fe2O3) and bixbyite (MnyFe1-y)2O3 are favored at lower temperature, while spinel 

phases (MnyFe1-y)3O4 are favored at higher temperature. At intermediate temperatures there is 

a two-phase area in which both forms coexist. The reaction of interest to chemical-looping 

with oxygen uncoupling is transition between bixbyite and spinel via reaction (9). 

6(Mn,Fe)2O3 ↔ 4(Mn,Fe)3O4 + O2       (9)  
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In Figure 3, it can be seen that if the surroundings has an O2 partial pressure of 0.05 atm, 

reaction (9) goes to the right at temperatures over ≈1330°C for pure Fe2O3. The corresponding 

temperature for pure Mn2O3 is ≈800°C. For mixtures of the two, O2 release happen at 

intermediate temperatures. The height of the two-phase area in Figure 3 corresponds to the 

change in temperature that will be required to force reaction (9) into completion. The reaction 

may also be accomplished by a change in O2 partial pressure, and the needed change should 

correspond to the required change in temperature. This suggests that mixtures with 

Mn/(Mn+Fe) of 0.5-0.8 would be particularly attractive for chemical-looping with oxygen 

uncoupling, since small changes in the surroundings would result in considerable O2 release. 

Figure 4 shows equilibrium O2 partial pressure as function of temperature over (Mn0.8Fe0.2)Ox 

and (Mn0.5Fe0.5)Ox. It can be seen that the combined spinel (Mn0.8Fe0.2)3O4 can be completely 

oxidized to bixbyite (Mn0.8Fe0.2)2O3 by 5% O2 at temperatures below ≈890°C, while the 

corresponding temperature for (Mn0.5Fe0.5)Ox is ≈940°C. Increasing the iron content above 

50% would increase the possible temperature of operation further but also widen the two-

phase area, which likely is undesirable.  

(MnyFe1-y)Ox combined oxides has been examined as oxygen carrier for chemical-looping 

applications by Azimi et al. [8, 9, 10], Rydén et al. [11], Shulman et al. [12], Lambert et al. 

[13], and Ksepko et al. [14]. Studies [8-12] are all in good agreement with the reasoning 

presented above. In particular the study by Azimi et al. [8] which was conducted according to 

the principles proposed in this paper using (Mn0.8Fe0.2)Ox as oxygen carrier, showed very fast 

O2 uncoupling and rapid oxidation of both methane and wood char already at 850°C.  

2.3 (MnySi1-y)Ox combined oxides 

Manganese and silica oxides are cheap, could be expected to be inert towards sulfur at 

relevant temperatures and have low health and environmental impact. A binary phase diagram 

of this system is shown in Figure 5. It can be seen that the expected reaction mechanism for 

O2 release and uptake is different depending on the material composition.  

With Si/(Mn+Si) below 0.14 the system behaves similar to the pure manganese oxide system. 

If the surroundings have an pO2 of 0.05 atm, bixbyite Mn2O3 (M), is reduced to hausmannite 

spinel Mn3O4 (S) via reaction (7) at temperatures above ≈800°C. Temperature for the 

transition increases as function of the Si content, which is expected to be present mainly as 

braunite Mn7SiO12 (B). The lower left corner of Figure 5 differs slightly from the classic 
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studies by Muan et al. [15, 16], so the precise temperature for how much Si that is needed to 

increase the decomposition temperature in this region is somewhat unclear. 

With Si/(Mn+Si) above 0.14 the mechanism for O2 release is decomposition of braunite to R 

rhodonite MnSiO3 (R), reaction (10). With pO2=0.05 atm, reaction (10) goes to the right above 

≈980°C. Excess Si would in this case be inert and present as tridymite SiO2 (T).  

(2/3)Mn7SiO12 + 4SiO2 ↔ (14/3)MnSiO3 + O2      (10) 

According to Figure 5, Reaction (10) can only go into completion in the first step if 

Si/(Mn+Si) is equal to 0.50, otherwise braunite or tridymite will be in excess. For Si/(Mn+Si) 

of 0.14-0.50, further O2 release instead take place from conversion of rhodonite to tephroite 

Mn2SiO4 (E), reaction (11), which takes place in a second step at higher temperatures. 

(10/3)MnSiO3 + (2/3)Mn7SiO12 ↔ 4Mn2SiO4 + O2     (11) 

Figure 6 show equilibrium partial pressure of O2 as function of temperature over (MnySi1-y)Ox 

combined oxides with Si/(Mn+Si) larger than 0.14. Complete oxidation with 5% O2 should be 

possible at temperatures below ≈980°C, which consequently should constitute a suitable air 

reactor temperature. Figure 6 is in good agreement with data provided by Muan et al. [16]. 

Up to this point, (MnySi1-y)Ox combined oxides has not been widely examined as oxygen 

carrier for chemical-looping applications. Calvo [17] and Jing et al. [18] examined O2 release 

and reactivity with fuel gases at temperatures up to 1100°C for such oxygen carriers with 

SiO2 content ranging from 2-50 wt%. All samples were found to release small amounts of O2, 

albeit some only at very high temperatures. In both studies reproducibility appears to have 

been a problem. At some occasions considerable O2 release was reported for initial 

experiments, but the effect diminished after several cycles or after reduction with fuel [17]. 

Other materials which initially did not release O2 in N2 at 900°C were found to release minor 

amounts following reduction with fuel and reoxidation [18]. At very high temperatures, 

particles with 30 wt% SiO2 were found to release O2 more or less as suggested for reaction 

(11) in Figure 6, but full oxidation to Mn7SiO12 apparently was not possible [17]. The general 

impression for these two series of experiments is that oxidation to Mn7SiO12, Mn2O3 and SiO2 

may have been slow or limited. Johansson et al. [19] examined oxygen carrier particles with 

Si/(Mn+Si) of 0.68, which were calcined in air at 950-1300°C. No O2 release in inert 

atmosphere was reported, but the phase composition of the particles was consistent with 

Figure 5, i.e. particles calcined at 950-1100°C consisted of Mn7SiO12 and SiO2, while 

particles calcined at 1200-1300°C also contained MnSiO3. Shulman et al. [12] prepared 

oxygen carriers with Si/(Mn+Si) of 0.24 which were calcined in air at 950-1100°C. The 
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resulting particles reportedly consisted of Mn2O3 and SiO2 and released O2 during fluidization 

with N2, following oxidation with 10% O2 in N2 The O2 release was quite high at 850°C, up to 

2.5%, only to fall back to almost zero at 900°C. Lack of O2 release at 900°C suggests that the 

mechanism could have been reaction (7), for which reoxidation to Mn2O3 should not have 

been possible at 900°C using the described process conditions. In any case, these observations 

as well as the phase composition of the fresh particles is inconsistent with Figures 5-6.  

To summarize; thermodynamic analysis suggests that (MnySi1-y)Ox combined oxides could 

work excellently as oxygen carrier for chemical-looping with oxygen uncoupling. There is 

limited experimental experience with this kind of materials though and the results fit poorly 

with theoretical analysis. 

2.4 CaMnO3-δ and other materials of perovskite structure 

Materials of perovskite structure have a unit cell which can be written ABO3-δ, in which A is a 

large cation and B is a smaller cation. The δ-factor expresses the degree of oxygen deficiency 

in the structure, and is zero for a perfect structure.  

There are countless possibilities to synthesize materials of perovskite structure. The A and B 

sites does not have to consist of one single type of ions. Doping of the A and B site with one 

or more type of ions is possible as long as the dopants have similar ionic radii and oxidation 

state as the main atom. Generally speaking, the B site can be selected among most transition 

metal ions. Good candidates for the application chemical-looping combustion could be for 

example manganese, iron and titania, albeit small amounts of more expensive materials such 

as copper, nickel or cobalt could be included in the structure as well. The A site needs to have 

much larger ionic radii and there are less options. Calcium appears to be the most attractive 

due to good availability and low cost, with the most commonly examined alternatives being 

lanthanum and strontium. Finally, the sum of the expected oxidation number of the A and B 

site should be in the range 5-6, which would yield materials with a δ-factor of 0.5-0. The 

formability of perovskites has been extensively reviewed by Li et al. [20]. 

Materials of perovskite structure are interesting for chemical-looping applications because δ 

can be increased or reduced by altering factors in the surroundings such as temperature, 

pressure or O2 fugacity. The surroundings in a chemical-looping air reactor are oxidative, 

while they are reductive in the fuel reactor. Therefore δar will be smaller and δfr will be larger. 

The amount of O2 available for oxidation of fuel can be written as (δfr - δar), see reaction (12). 

ABO3-δar ↔ ABO3-δfr + ½(δfr-δar) O2       (12) 
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Not all materials with perovskite structure undergo reaction (12) at conditions suitable for 

chemical-looping combustion. Instead, the properties of a certain material will depend on 

nature of the A and B sites. One proposed material composition which has proven to be of 

interests for chemical looping combustion is calcium manganite CaMnO3-δ, and slightly 

altered variants thereof. Rydén et al. [21] examined CaMn0.875Ti0.125O3-δ in a small circulating 

fluidized bed reactor and reported good fluidization behavior, stable operation, O2 release in 

inert atmosphere and that complete conversion of CH4 was achievable. Leion et al. [22] 

examined CaMn1-xTixO3-δ both in a thermo gravimetric analyzer and in batch fluidized bed 

reactor. The materials were found to have high reactivity with CH4 and petroleum coke and 

released O2 in gas phase when fluidized with N2. Further, it was possible to remove as much 

as 8-9 wt% O2 from the particles without collapsing the perovskite structure which suggests a 

feasible operating span ranging from δ of 0 to about 0.7. Hallberg et al. [23] examined 

CaMnO3-δ oxygen carriers with the B site doped with Fe, Ti, and Mg with good results, while 

Fossdal et al. [24] successfully manufactured CaMnO3-δ oxygen carrier materials from 

manganese ore and calcium hydroxide. 

With respect to direct release of gas phase O2 in inert atmosphere, different dynamics could 

be expected compared to materials which undergo distinct phase changes. Figure 7 describes 

δ at equilibrium as function of O2 partial pressure. It can be seen that O2 could be expected to 

be released at comparably high concentrations initially, when δ is at its minimum. But as O2 is 

removed from the perovskite structure and δ increases, the obtained O2 partial pressure is 

continuously reduced in a logarithmic fashion. This behavior has been documented for 

example by Leion et al. [22] and Hallberg et al. [23] during experiments in batch fluidized 

bed reactor.  

It is evident from Figure 7 that the higher O2 partial pressure which is used for oxidation, the 

more O2 can be transported to an inert or low O2 atmosphere. For example, oxidation with 

21% O2 and log(pO2/atm)=-0.678 at 950°C and atmospheric pressure would result in 

CaMnO2.95, while oxidation with 5% O2 and log(pO2/atm)=-1.301 at the same conditions 

would result in CaMnO2.92. Consider a second process step in which gaseous O2 would be 

released in an atmosphere with 0.1% O2 and log(pO2/atm)=-3.000 and the final product could 

be expected to be CaMnO2.85. In the first case, the O2 release according to reaction (12) would 

be ½·(0.15-0.05)=0.050 mol O2 (≈1.1 wt%), compared to ½·(0.15-0.08)=0.035 mol O2 (≈0.8 

wt%). This mechanism described has been verified by Rydén et al. [21] by conducting 

experiments in a small circulating fluidized bed reactor, in which it was seen that O2 release 
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was considerably higher when oxidizing CaMn0.875Ti0.125O3-δ with air rather than with a 

mixture consisting of 5% O2 and 95% N2. 

2.5 (MnyNi1-y)Ox combined oxides 

Shulman et al. [12] examined oxygen carrier particles consisting of 80 wt% Mn3O4 and 20 

wt% NiO calcined in air at 950-1300°C, all of which reportedly consisted of mostly of 

NiMn2O4 spinel, as per XRD of fresh materials. During fluidization with N2 small amounts of 

O2 were released at 810-900°C. The likely mechanism is decomposition into manganese-rich 

spinel (MnyNi1-y)3O4 and nickel-rich (NiyMn1-y)O of rock-salt structure, reaction (13), as have 

been reported by Csete de Györgyfalva and Reaney [26]. 

6NiMn2O4 ↔ 6NiO + 4Mn3O4 + O2       (13) 

The reported temperature of decomposition of NiMn2O4 in air according to reaction (13) is 

907°C [26]. This suggests that reoxidation could be a problem when using low O2 

concentrations. Shulman et al. [12] were capable to oxidize to oxidize particles using 10% O2 

in N2 at 900°C though. In general, these results appear to be in good agreement with the phase 

diagram provided by Golikov and Balakirev [27]. 

Despite these promising results, the allure of (MnyNi1-y)Ox combined oxides as oxygen carrier 

for chemical-looping applications is not necessarily high. Ni is expensive and carcinogenic 

and would probably be more useful as monometallic oxygen carrier since direct reduction of 

NiO yields metallic Ni, which is well-known to possess some interesting catalytic properties. 

2.6 (MnyCu1-y)Ox combined oxides 

Since both manganese and copper oxides individually has properties which makes them 

interesting for chemical-looping with oxygen uncoupling, it could be expected that  

(MnyCu1-y)Ox combined oxides should form compounds or solid solutions capable of 

releasing O2 in the relevant temperature span as well. Azad et al. [28] synthesized particles 

with a Mn/Cu ratio of 2 via extrusion and calcination at 950°C. XRD analysis showed that the 

fresh and oxidized material consisted of one or several combined spinel phases  

(MnyCu1-y)3O4, while particles reduced with fuel gas at 850°C consisted mostly of cerdnerite 

CuMnO2 and hausmannite Mn3O4. The particles provided high reactivity with CH4 and 

released up to 2.5% O2 when fluidized with N2 at 850°C. Reaction (14) illustrates the 

expected reaction mechanism for the stoichiometric spinel: 

3CuMn2O4 ↔ 3CuMnO2 + Mn3O4 + O2       (14) 
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These observations are in accordance with the phase diagram suggested by Driessens and 

Rieck [29], whose work also indicates that all (MnyCu1-y)Ox combined oxides could release 

gas phase O2 at relevant temperatures, albeit via complex reactions schemes and at lower 

temperatures than for pure CuO. Whether this option could be interesting for chemical-

looping applications remains to be explored. 

2.7 (MnyMg1-y)Ox combined oxides 

The following solid solutions and compounds are said to exist below 1000°C in the Mn-Mg-O 

ternary system according to Valverde-Diez and Grande-Fernándes [30]: 

a) Compounds Mg6MnO8, Mg2MnO4 and MgMn2O4. 

b) Solid solution (MgxMn3-x)O4 with 0<x<2 which has a spinel structure. 

c) Solid solution (MgxMn1-x)O with 0<x<0.33 which has a rock-salt structure. 

Shulman et al. [31] successfully prepared several oxygen carrier particles with Mg/Mn ratio 

of 2 and calcination in air at 1100-1300°C, all of which reportedly consisted of Mg2MnO4, as 

per XRD analysis of fresh particles. This corresponds to 2MgO·MnO2 and an oxidation state 

of manganese ions of Mn+4, which seems quite remarkable. In inert atmosphere and elevated 

temperature, O2 could be expected to be released via reaction (15), which illustrates reduced 

solubility of Mg in the spinel solid solution. The simplified reactions (16-17) is for 

stoichiometric compounds: 

Mg2MnO4 ↔ [1-(1/(1+x))] (Mg2-xMn1+x)O4 +[1+x] MgO + [1/(1+x)] O2  (15) 

4Mg2MnO4 ↔ 2MgMn2O4 +6MgO + O2      (16) 

6MgMn2O4 ↔ 4Mn3O4 + 6MgO + O2       (17) 

From the work of Shulman et al. [31] and earlier work with this system by Oliveira and Brett 

[32], it seems likely that reaction (15) takes place at higher temperatures than for 

monometallic manganese oxides and via a sliding equilibrium for O2 partial pressure 

depending on the factor x in reaction (15). Further work will be needed in order to provide a 

better understanding of this oxide system though. 

3 Results and discussion 

The focus of this article has been on combined oxides with manganese as one of its 

constituents. That is not to say that other ternary systems do not exhibit this kind of 
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properties. We believe that the case for manganese is pretty good though, since it is a cheap 

and comparably benign transition metal which forms compounds with a large number of other 

elements and which ions can exist in a remarkably high number of oxidation states, from 

Mn2+ to Mn7+. A summary of the most basic properties for the materials suggested in this 

work can be found in Table 1 on the following page. 

In Table 1, it can be seen that most manganese based combined oxides has considerably lower 

oxygen carrying capacity R0, compared to CuO. Values of 2-3 wt% should still be sufficient 

for practical applications though. 

∆H for O2 release typically is in the range 250-325 kJ/mol O2, i.e. pretty similar to that of 

CuO. If compared to the enthalpy of combustion at 900°C for methane (-401 kJ/mol O2) and 

carbon (-379 kJ/mol O2), it is evident that the overall reaction in the fuel reactor typically will 

be slightly exothermic. As explained above, this could be favorable since it simplifies closure 

of the heat balance for the fuel reactor. It shall be pointed out that endothermic reaction in the 

fuel reactor using oxygen carriers with O2 release is a possibility, and should be the case for 

example if Co3O4–CoO is used, as can be seen in Table 1. 

Of the suggested systems, some could be suspicable to deactivation by fuel impurities. The 

sulfur tolerance of oxygen carriers containing for example Ca, Mg and Ni is unknown but 

questionable, since formation of stable sulfates and sulfides would be favored at relevant 

temperatures. The effect of sulfur on such oxygen carriers will need to be carefully considered 

and experimentally examined.  

Factors which have not been considered in this paper are for example mechanical and 

chemical stability of multiphase materials, which could be problematic. Compatibility of the 

active phase with inert support materials would also get more complicated the more elements 

are included in the oxygen carrier. Manufacturing would probably not be more complicated 

for combined oxides compared to monometallic, although better homogenization and higher 

calcination temperatures may be necessary to obtain the desired materials.  

4 Conclusions 

This paper has provided an overview of the possibility to design feasible oxygen carrier 

materials from combined oxides. Current literature has been reviewed and complemented 

with thermodynamic calculations. It can be concluded that there are several opportunities with 

the most interesting ones being materials based on the general formulas (MnyFe1-y)Ox,  

(MnySi1-y)Ox and CaMnO3-δ. 
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Figure 1: Schematic description of chemical-looping combustion (CLC) and chemical-

looping with oxygen uncoupling (CLOU). 
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Figure 2: Equilibrium O2 partial pressure of as function of temperature for selected 

monometallic oxygen carriers. 
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Figure 3: Binary phase diagram of (MnyFe1-y)Ox in an atmosphere with an O2 partial 

pressure of 0.05 atm. 
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Figure 4: pO2 as function of temperature over (MnxFe1-x)Ox. Area enclosed by each 

set of curves represents the two-phase area where bixbyite and spinel phases 

coexists. 
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Figure 5: Binary phase diagram of (MnySi1-y)Ox in an atmosphere with an O2 partial 

pressure of 0.05 atm. 
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Figure 6: pO2 as function of temperature over (MnySi1-y)Ox combined oxides with 

Si/(Mn+Si) above 0.14. Transition to Mn2SiO4 only valid for Si/(Mn+Si) 0.14-0.50. 
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Figure 7: Equilibrium δ as function of O2 partial pressure for CaMnO3-δ at 700-950°C 

measured by coulometric titration by Leonidova et. al [25]. 
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Table 1: Summary of key characteristics for proposed oxygen carrier materials. 

 

Reaction 

 

R0 

(wt%) 

∆H 

(kJ/mol O2) 

Teq,pO2=5% 

(°C) 

Teq,pO2=21% 

(°C) 

4CuO ↔ 2Cu2O + O2 10.06 261 959 1032 

6Mn2O3 ↔ 4Mn3O4 + O2  3.38 195 796 871 

2Co3O4 ↔ 6CoO + O2 6.64 408 854 893 

6(Mn0.8Fe0.2)2O3 ↔ 4(Mn0.8Fe0.2)3O4 + O2  3.37 254 ≈890 ≈965 

6(Mn0.5Fe0.5)2O3 ↔ 4(Mn0.5Fe0.5)3O4 + O2  3.36 344 ≈940 ≈1005 

(2/3)Mn7SiO12 + 4SiO2 ↔ (14/3)MnSiO3 + O2 4.15 315 [33] ≈983 ≈1050 

(10/3)MnSiO3 + (2/3)Mn7SiO12 ↔ 4Mn2SiO4 + O2  3.81 319 [33] >1100 >1100 

25CaMnO2.92 ↔ 25CaMnO2.84 + O2 0.90 325 [34] na na 

5CaMnO2.92 ↔ 5CaMnO2.52 + O2 4.52 325 [34] na na 

6NiMn2O4 ↔ 6NiO + 4Mn3O4 + O2 2.29 Unavailable <<907 ≈907 [26] 

3CuMn2O4 ↔ 3CuMnO2 + Mn3O4 + O2  4.49 Unavailable <<990 ≈990 [29] 

4Mg2MnO4 ↔ 2MgMn2O4 + 6MgO + O2 4.77 Unavailable na na 

6MgMn2O4 ↔ 4Mn3O4 + 6MgO + O2 2.69 Unavailable na na 

 

 


