761 research outputs found

    A temporal Central Limit Theorem for real-valued cocycles over rotations

    Get PDF
    We consider deterministic random walks on the real line driven by irrational rotations, or equivalently, skew product extensions of a rotation by α\alpha where the skewing cocycle is a piecewise constant mean zero function with a jump by one at a point β\beta. When α\alpha is badly approximable and β\beta is badly approximable with respect to α\alpha, we prove a Temporal Central Limit theorem (in the terminology recently introduced by D.Dolgopyat and O.Sarig), namely we show that for any fixed initial point, the occupancy random variables, suitably rescaled, converge to a Gaussian random variable. This result generalizes and extends a theorem by J. Beck for the special case when α\alpha is quadratic irrational, β\beta is rational and the initial point is the origin, recently reproved and then generalized to cover any initial point using geometric renormalization arguments by Avila-Dolgopyat-Duryev-Sarig (Israel J., 2015) and Dolgopyat-Sarig (J. Stat. Physics, 2016). We also use renormalization, but in order to treat irrational values of β\beta, instead of geometric arguments, we use the renormalization associated to the continued fraction algorithm and dynamical Ostrowski expansions. This yields a suitable symbolic coding framework which allows us to reduce the main result to a CLT for non homogeneous Markov chains.Comment: a few typos corrected, 28 pages, 4 figure

    High distance Heegaard splittings via fat train tracks

    Get PDF
    We define "fat" train tracks and use them to give a combinatorial criterion for the Hempel distance of Heegaard splittings for closed orientable 3-manifolds. We apply this criterion to 3-manifolds obtained from surgery on knots in the three sphere.Comment: 25 pages no figures. to appear in Proceedings of "Knots Groups and 3-manifolds" Marseilles France 200

    Cycle lengths in sparse graphs

    Full text link
    Let C(G) denote the set of lengths of cycles in a graph G. In the first part of this paper, we study the minimum possible value of |C(G)| over all graphs G of average degree d and girth g. Erdos conjectured that |C(G)| =\Omega(d^{\lfloor (g-1)/2\rfloor}) for all such graphs, and we prove this conjecture. In particular, the longest cycle in a graph of average degree d and girth g has length \Omega(d^{\lfloor (g-1)/2\rfloor}). The study of this problem was initiated by Ore in 1967 and our result improves all previously known lower bounds on the length of the longest cycle. Moreover, our bound cannot be improved in general, since known constructions of d-regular Moore Graphs of girth g have roughly that many vertices. We also show that \Omega(d^{\lfloor (g-1)/2\rfloor}) is a lower bound for the number of odd cycle lengths in a graph of chromatic number d and girth g. Further results are obtained for the number of cycle lengths in H-free graphs of average degree d. In the second part of the paper, motivated by the conjecture of Erdos and Gyarfas that every graph of minimum degree at least three contains a cycle of length a power of two, we prove a general theorem which gives an upper bound on the average degree of an n-vertex graph with no cycle of even length in a prescribed infinite sequence of integers. For many sequences, including the powers of two, our theorem gives the upper bound e^{O(\log^* n)} on the average degree of graph of order n with no cycle of length in the sequence, where \log^* n is the number of times the binary logarithm must be applied to n to get a number which is at mos

    Detecting right-veering diffeomorphisms

    Full text link
    A result of Honda, Kazez, and Mati\'{c} states that a contact structure is tight if and only if all its supporting open books are right-veering. We show a combinatorial way of detecting the left-veering arcs in open books, implying the existence of an algorithm that detects the right-veering property for compact surfaces with boundary.Comment: Comments are welcom

    Category forcings, MM+++MM^{+++}, and generic absoluteness for the theory of strong forcing axioms

    Get PDF
    We introduce a category whose objects are stationary set preserving complete boolean algebras and whose arrows are complete homomorphisms with a stationary set preserving quotient. We show that the cut of this category at a rank initial segment of the universe of height a super compact which is a limit of super compact cardinals is a stationary set preserving partial order which forces MM++MM^{++} and collapses its size to become the second uncountable cardinal. Next we argue that any of the known methods to produce a model of MM++MM^{++} collapsing a superhuge cardinal to become the second uncountable cardinal produces a model in which the cutoff of the category of stationary set preserving forcings at any rank initial segment of the universe of large enough height is forcing equivalent to a presaturated tower of normal filters. We let MM+++MM^{+++} denote this statement and we prove that the theory of L(Ordω1)L(Ord^{\omega_1}) with parameters in P(ω1)P(\omega_1) is generically invariant for stationary set preserving forcings that preserve MM+++MM^{+++}. Finally we argue that the work of Larson and Asper\'o shows that this is a next to optimal generalization to the Chang model L(Ordω1)L(Ord^{\omega_1}) of Woodin's generic absoluteness results for the Chang model L(Ordω)L(Ord^{\omega}). It remains open whether MM+++MM^{+++} and MM++MM^{++} are equivalent axioms modulo large cardinals and whether MM++MM^{++} suffices to prove the same generic absoluteness results for the Chang model L(Ordω1)L(Ord^{\omega_1}).Comment: - to appear on the Journal of the American Mathemtical Societ
    • …
    corecore