
                          Bromberg, M., & Ulcigrai, C. (2018). A temporal Central Limit Theorem for
real-valued cocycles over rotations. Annales de l'Institut Henri Poincaré (B)
Probabilités et Statistiques, 54(4), 2304-2334. https://doi.org/10.1214/17-
AIHP872

Peer reviewed version

Link to published version (if available):
10.1214/17-AIHP872

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Institute Henri Poincaré at https://projecteuclid.org/euclid.aihp/1539849800#abstract . Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/146503509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1214/17-AIHP872
https://doi.org/10.1214/17-AIHP872
https://doi.org/10.1214/17-AIHP872
https://research-information.bris.ac.uk/en/publications/a-temporal-central-limit-theorem-for-realvalued-cocycles-over-rotations(9b0452d5-e444-4e6f-af9f-37163690d76e).html
https://research-information.bris.ac.uk/en/publications/a-temporal-central-limit-theorem-for-realvalued-cocycles-over-rotations(9b0452d5-e444-4e6f-af9f-37163690d76e).html


A TEMPORAL CENTRAL LIMIT THEOREM FOR REAL-VALUED COCYCLES

OVER ROTATIONS

MICHAEL BROMBERG AND CORINNA ULCIGRAI

Abstract. We consider deterministic random walks on the real line driven by irrational rotations, or equiv-
alently, skew product extensions of a rotation by α where the skewing cocycle is a piecewise constant mean
zero function with a jump by one at a point β. When α is badly approximable and β is badly approximable
with respect to α, we prove a Temporal Central Limit theorem (in the terminology recently introduced by
D.Dolgopyat and O.Sarig), namely we show that for any �xed initial point, the occupancy random variables,
suitably rescaled, converge to a Gaussian random variable. This result generalizes and extends a theorem
by J. Beck for the special case when α is quadratic irrational, β is rational and the initial point is the origin,
recently reproved and then generalized to cover any initial point using geometric renormalization arguments
by Avila-Dolgopyat-Duryev-Sarig (Israel J., 2015) and Dolgopyat-Sarig (J. Stat. Physics, 2016). We also
use renormalization, but in order to treat irrational values of β, instead of geometric arguments, we use the
renormalization associated to the continued fraction algorithm and dynamical Ostrowski expansions. This
yields a suitable symbolic coding framework which allows us to reduce the main result to a CLT for non
homogeneous Markov chains.

RESUME On considère des marches aléatoires sur la droite réelle, engendrés par des rotations irra-
tionnelles, ou, de manière équivalente, des produits croisés d'une rotation par un nombre réel α, dont le
cocycle est une fonction constante par morceaux de moyenne nulle admettant un saut de un à une singu-
larité β. Si α est mal aapproché par des rationnels et β n'est pas bien approché par l'orbite de α, nous
démontrons une version temporelle du Théorème de la Limite Centrale (ou un Temporal Central Limit

theorem dans la terminologie qui a été introduite récemment par D. Dolgopyat et O. Sarig). Plus précisé-
ment, nous montrons que, pour chaque point initial �xé, les variables aléatoires d'occupation, proprement
renormalisées, tendent vers une variable aléatoire de loi normale. Ce résultat généralise un théorème de
J. Beck dans le cas sparticulier où α est un nombre irrationnel quadratique, β est un nombre rationnel et
le point initial est l'origine. Ce résultat de Beck a été montré avec de nouvelles méthodes et étendu par
Avila-Dolgopyat-Duryev-Sarig (Israel J. , 2015) et Dolgopyat-Sarig (J. Stat. Physics, 2016) à l'aide d'une
renormalisation géométrique. Dans ce papier, nous utilisons aussi la renormalisation, mais, au lieu d'avoir
recours à un argument géométrique, nous proposons d'utiliser l'algorithme de fraction continue avec une
version dynamique de l'expansion de Ostrowski. Cela nous donne un codage symbolique qui nous permet de
réduire le résultat principal à un théorème de la limite centrale pour de chanes de Markov non-homogènes.

1. introduction and results

The main result of this article is a temporal distributional limit theorem (see Section 1.1 below) for certain
functions over an irrational rotation (Theorem 1.1 below). In order to introduce and motivate this result,
in the �rst section, we �rst de�ne two types of distributional limit theorems in the study of dynamical
systems, namely spatial and temporal. Temporal limit theorems in dynamics are the focus of the recent
survey [?] by D. Dolgopyat and O. Sarig; we refer the interested reader to [?] and the references therein for a
comprehensive introduction to the subject, as well as for a list of examples of dynamical systems known up
to date to satisfy temporal distributional limit theorems. In section 1.2 we then focus on irrational rotations,
which are one of the most basic examples of low complexity dynamical systems, and recall previous results
on temporal limit theorems for rotations, in particular Beck's temporal CLT. Our main result in stated in
section 1.3, followed by a description of the structure of the rest of the paper in section 1.4.

1.1. Temporal and Spatial Limits in dynamics. Distributional limit theorems appear often in the
study of dynamical systems as follows. Let X be a complete separable metric space, m a Borel probability
measure on X and denote by B is the Borel σ-algebra on X. Let T : X → X be a Borel measurable map.
We call the quadruple (X,B,m, T ) a probability preserving dynamical system and assume that T is ergodic

1



2 MICHAEL BROMBERG AND CORINNA ULCIGRAI

with respect to m. Let f : X → R be a Borel measurable function and set

Sn (T, f, x) :=

n−1∑
k=0

f ◦ T k (x)

We will also use the notation Sn (x), or Sn (f, x) instead of Sn (T, f, x), when it is clear from the context,
what is the underlying transformation or function. The function Sn(x) is called (the nth) Birkho� sum (or
also ergodic sum) of the function f over the transformation T . The study of Birkho� sums, their growth and
their behavior is one of the central themes in ergodic theory. When the transformation T is ergodic with
respect to m, by the Birkho� ergodic theorem, for any f ∈ L1(X,m), for m-almost every x ∈ X, Sn(f, x)/n
converges to

∫
fdm as n grows; equivalently, one can say that the random variables Xn := f ◦Tn where x is

chosen randomly according to the measure m, satisfy the strong law of large numbers. We will now introduce
some limit theorems which allow to study the error term in the Birkho� ergodic theorem.

The function f is said to satisfy a spatial distributional limit theorem (spatial DLT) if there exists a
random variable Y which is non-deterministic (i.e. there there is no a ∈ R such that Prob (Y = a) = 1) and

sequences of constants An, Bn ∈ R, Bn → ∞ such that the random variables Sn(x)−An
Bn

, where x is chosen

randomly according to the measure m (which, for short, will be denoted by x ∼ µ), converge in distribution
to Y . In this case we write

Sn −An
Bn

dist−→ Y for x ∼ µ.

It is the case that many hyperbolic dynamical systems, under some regularity conditions on f , satisfy a
spatial DLT with the limit being a Gaussian random variable. In the cases that we have in mind, the rate of
mixing of the sequence of random variables Xn := f ◦ Tn is su�ciently fast, in order for them to satisfy the
Central Limit Theorem (CLT). On the other hand, in many classical examples of dynamical systems with
zero entropy, for which the random variables Xn := f ◦ Tn are highly correlated, the spatial DLT fails if f
is su�ciently regular. For example, this is the case when T is an irrational rotation and f is of bounded
variation.

Perhaps surprisingly, many examples of dynamical systems with zero entropy satisfy a CLT when instead
of averaging over the space X, one considers the Birkho� sums Sn (x0) over a single orbit of some �xed initial
condition x0 ∈ X. Fix an initial point x0 ∈ X and consider its orbit under T . One can de�ne a sequence of
occupation measures on R by

νn (F ) :=
1

n
# {1 ≤ k ≤ n : Sk (x0) ∈ F}

for every Borel measurable F ⊂ R. One can interpret the quantity νn (F ) as the fraction of time that the
Birkho� sums Sk (x0) spend in the set F , up to time n. Let Yn be a sequence of random variables distributed
according to νn. We say that the pair (T, f) satis�es a temporal distributional limit theorem (temporal DLT)
along the orbit of x0, if there exists a non-deterministic random variable Y , and two sequences An ∈ R and
Bn →∞ such that (Yn − An)/Bn converges in distribution to Y . In other words, the pair (T, f) satis�es a
temporal DLT along the orbit of x0, if

1

n
#

{
1 ≤ k ≤ n :

Sk (x0)−An
Bn

< a

}
−→
n→∞

Prob (Y < a)

for every a ∈ R, such that Prob (Y = a) = 0. If the limit Y is a Gaussian random variable, we call this
type of behavior a temporal CLT along the orbit of x0. Note, that this type of result may be interpreted
as convergence in distribution of a sequence of normalized random variables, obtained by considering the
Birkho� sums Sk (x0) for k = 1, .., n and choosing k randomly uniformly.

1.2. Beck's temporal CLT and its generalizations. One example of occurrence of a temporal CLT in
dynamical systems with zero entropy is the following result by Beck, generalizations of which are the main
topic of this paper. Let us denote by Rα the rotation on the interval T = R \ Z by an irrational number
α ∈ R, given by

Rα(x) = x+ α mod 1.
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Let fβ : T → R be the indicator of the interval [0, β) where 0 < β < 1, rescaled to have mean zero with
respect to the Lebesgue measure on T, namely

fβ(x) = 1[0,β) (x)− β.
The sequence {Sn} of random variables given by the Birkho� sums Sn(x) = Sn (Rα, fβ , x) , where x is
taken uniformly with respect to the Lebesgue measure, is sometimes referred to in the literature as the
deterministic random walk driven by an irrational rotation (see for example [?]).

Beck proved [?, ?] that if α is a quadratic irrational, and β is rational, then the pair (Rα, fβ) satis�es a
temporal DLT along the orbit of x0 = 0. More precisely, he shows that there exist constants C1 and C2 such
that for all a, b ∈ R, a < b

1

n
#

{
1 ≤ k ≤ n :

Sk (Rα, fβ , 0)− C1 log n

C2

√
log n

∈ [a, b]

}
→ 1√

2π

b∫
a

e−
x2

2 dx.

Beck's CLT relates to the theory of discrepancy in number theory as follows. If α ∈ R is irrational, by
unique ergodicity of the rotation Rα, the sequence of {jα} is equidistributed modulo one, i.e. in particular,
for any β ∈ [0, 1] if we set

Nk(α, β) := # {0 ≤ j < k | 0 ≤ {jα} < β} ,
where {x} is the fractional part of x, then Nk (α, β) /k converges to β, or, equivalently, Nk (α, β) = kβ+o(k).
Discrepancy theory concerns the study of the error term in the expression Nk (α, β) = kβ+o(k). Beck's result
hence says that, when α is a quadratic irrational and β is rational, the error term Nk (α, β) := Nk (α, β)−kβ
, when k is chosen randomly uniformly in {1, ..., n}, can be normalized so that it converges to the standard
Gaussian distribution as n grows to in�nity.

Let us also remark that the Birkho� sums in the statement of Beck's theorem are related to the dynamics
of the map Tfβ : T× R→ T× R, de�ned by

Tfβ (x, y) = (Rα (x) , y + fβ (x)) , (x, y) ∈ T × R,
since one can see that the form of the iterates of Tf is T

n
f (x, y) = (Rnα (x) , y + Sn(fβ , x)). This skew product

map has been studied as a basic example in in�nite ergodic theory and there is a long history of results on
it, starting from ergodicity (see for example [?, ?, ?, ?, ?, ?]).

Recently, in [?], a new proof of Beck's theorem is the special case when β = 1
2 was given. This proof,

which uses dynamical and geometrical renormalization tools, is crucially based on the interpretation of the
corresponding skew-product map Tf1/2 as the Poincaré map of a �ow on the staircase periodic surface, which

was noticed and pointed out in [?]. In [?] this method is generalized to show that for any initial point x,
any α quadratic irrational and any rational β, there exists a sequence An := An (α, β, x) and a constant
B := B (α, β) such that

1

n
#

{
1 ≤ k ≤ n :

Sk (Rα, fβ , x)−An
B
√

log n
∈ [a, b]

}
→ 1√

2π

b∫
a

e−
x2

2 dx

for all a, b ∈ R, a < b. Dolgopyat and Sarig informed us that in ongoing work [?] they are also able to prove
a temporal CLT for the case in which α is badly approximable and β is rational. Furthermore, they can show
(also in [?]) that the temporal CLT fails for a full Lebesgue measure set of α.

1.3. Main result and comments. The main result of this paper is the following generalization of Beck's
temporal CLT, in which we consider certain irrational values of β and badly approximable values of α. Let
us recall that α is badly approximable (or equivalently, α is of bounded type) if there exists a constant c > 0
such that |α− p/q| ≥ c/ |q| for any integers p, q such that q 6= 0 and gcd (p, q) = 1. Equivalently, α is badly
approximable if the continued faction entries of α are uniformly bounded. For α ∈ (0, 1) \Q let us say that
β is badly approximable with respect to α if there exists a constant C > 0 such that

(1.1) |qα− β − p| > C

|q|
∀p ∈ Z, q ∈ Z \ {0} , gcd (p, q) = 1.
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One can show that given a badly approximable α, the set of β which are badly approximable with respect
to α have full Hausdor� dimension [?, Corollary 1].

Theorem 1.1. Let 0 < α < 1 be a badly approximable irrational number. For every β badly approximable
with respect to α and every x ∈ T there exists a sequence of centralizing constants An := An (α, β, x) and a
sequence of normalizing constants Bn := Bn (α, β) such that for all a < b

1

n
#

{
1 ≤ k ≤ n :

Sk (Rα, fβ , x)−An
Bn

∈ [a, b]

}
→ 1√

2π

b∫
a

e−
x2

2 dx.

In other words, for every α badly approximable, any β badly approximable with respect to α the pair
(Rα, f) satis�es the temporal CLT along the orbit of any x ∈ T. Note that the centralizing constants depend
on x, while the normalizing constants do not. We will see in Section 4.1 that badly approximable numbers
with respect to α can be explicitly described in terms of their Ostrowski expansion, using an adaptation of the
continued fraction algorithm in the context of non homogenous Diophantine Approximation. Let us recall
that quadratic irrationals are in particular badly approximable. Moreover, when α is badly approximable,
it follows from de�nition that any rational number β is badly approximable with respect to α. Thus, this
theorem, already in the special case in which α is assumed to be a quadratic irrational, since it includes
irrational values of β, gives a strict generalization of the results mentioned above. As we already pointed
out, the temporal limit theorem, fails to hold for almost every value of α [?] (in preparation). It would
be interesting to see whether a temporal CLT holds for a larger class of values of β. Under the present
assumptions, we believe that there exist constants C, c > 0, such that c

√
log n ≤ Bn ≤ C

√
log n for all

n ∈ N; this will be the subject of future generalizations of this work, for which we believe that estimates of
the growth rate of the variance will be crucial.

While the proof of Theorem 1.1 was inspired and motivated by an insight of Dolgopyat and Sarig and
based, as theirs, on renormalization, we stress that our renormalization scheme and the formalism that we
develop is di�erent. As remarked in the previous section, the proof of Beck's theorem in [?, ?] exploits
a geometric renormalization which is based on the link with the staircase �ow and the existence of a�ne
di�eomorphisms which renormalize certain directions of directional �ows on this surface. This geometrical
insight, unfortunately, as well as the interpretation of the map Tf as the Poincaré map of a staricase
�ow, breaks down when β is not rational. Our proof does not rely on this geometric picture, but uses
only the more classical renormalization given by the continued fraction algorithm for rotations, with the
additional information encoded by Ostrowski expansions in the context of non homogeneous Diophantine
approximations (see Section 2). This renormalization allows to encode the dynamics symbolically and reduce
it to the formalism of adic and Vershik maps [?].

There is a large literature of results on limiting distributions for entropy zero dynamical systems, see for
example [?, ?, ?, ?, ?, ?]. Let us mention two recent results in the context of substitution systems which
are related to our work. Bressaud, Bufetov and Hubert proved in [?] a spatial CLT for substitutions with
eigenvalues of modulus one along a subsequence of times. In the same context (substitutions with eigenvalues
of modulus one), Paquette and Son [?] recently also proved a temporal CLT. Let us also mention that in [?] a
temporal CLT over quadratic irrational rotations and Rd valued, piecewise constant functions with rational
discontinuities, is shown to hold along subsequences and in [?] a temporal DLT is proved for windings of
horocycle �ows on non-compact hyperbolic surfaces with �nite area.

While we wrote this paper speci�cally for deterministic random walks driven by rotations, there are
other entropy zero dynamical systems where this formalism applies and for which one can prove temporal
limit theorems using similar techniques. For example, in work in progress, we can prove temporal limit
theorems also for certain linear �ows on in�nite translation surfaces and some cocycles over interval exchange
transformation and more in general for certain S−adic systems (which are non-stationary generalizations of
substitution systems, see [?]).

1.4. Proof tools and sketch and outline of the paper. In Section 2 we introduce the renormalization
algorithm that we use, as a key tool in the proofs: this is essentially the classical multiplicative continued
fraction algorithm, with additional data which records the relative position of the break point β of the
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function fβ under renormalization. This renormalization acts on the underlying parameter space to be
de�ned in what follows, as a (skew-product) extension of the Gauss map, and it produces simultaneously the
continued fraction expansion entries of α and the Ostrowski expansion entries of β. Variations on this skew
product have been studied by several authors (see in particular [?, ?]) and it is well known that it is related
to a section of the diagonal �ow on the space of a�ne lattices (as explained in detail in [?]). In sections 2.4
and 2.5 we explain how the renormalization algorithm provides a way of encoding dynamics symbolically
in terms of a Markov chain. More precisely, the dynamics of the map Rα we are interested in translates in
symbolic language to the adic or Vershik dynamics (on a Bratelli diagram given by the Markov chain), as
explained in section. The original function fβ de�nes under renormalization a sequence of induced functions
(which correspond to Birkho� sums of the function fβ at �rst return times, called special Birkho� sums
in the terminology introduced by [?]). The Birkho� sums of the function fβ can be then decomposed into
sums of special Birkho� sums. This formalism and the symbolic coding allows to translate the study of the
temporal visit distribution random variable to the study of a non-homogeneous Markov chain, see section
2.6. In Section 3 we provide su�cient conditions for a non-homogeneous Markov chain to satisfy the CLT.
Finally, in Section 4 we prove that these conditions are satis�ed for the Markov chain modeling the temporal
distribution random variables.

2. renormalization

2.1. Preliminaries on continued fraction expansions and circle rotations. Let G:(0, 1) → (0, 1) be
the Gauss map, given by G(x) = {1/x}, where {·} denotes the fractional part. Recall that a regular continued
fraction expansion of α ∈ (0, 1) \Q is given by

α =
1

a0 +
1

a1 + . . .

where ai := a (αi) =
[

1
αi

]
and αi := Gi(α)=

{
1

αi−1

}
. In this case we write α = [a0, a1, ...] . Setting q−1 = 1,

q0 = a0, qn = anqn−1 + qn−2 for n ≥ 1, and p−1 = 0, p0 = 1, pn = anpn−1 + pn−2 for n ≥ 1 we have
gcd (pn, qn) = 1 and

1

a0 +
1

a1 + . . .
1

an

=
pn
qn
.

Let α ∈ (0, 1) \ Q, T := R/Z and Rα : T → T be the irrational rotation given byRα := x + α mod 1.
Then the Denjoy-Koksma inequality [?, ?] states that if f : T→ R is a function of bounded variation, then
for any n ∈ N,

(2.1) sup {|f ◦Rqnα (x)| : x ∈ T} ≤
∨

T
f

where
∨

T f is the variation of f on T.
In this section we de�ne the dynamical renormalization algorithm we use in this paper, which is an

extension of the classical continued fraction algorithm and hence of the Gauss map. This algorithm gives
a dynamical interpretation of the notion of Ostrowski expansion of β relative to α in non-homogeneous
Diophantine approximation. We mostly follow the conventions of the paper [?] by Arnoux and Fisher, in
which the connection between this renormalization and homogeneous dynamics (in particular the geodesic
�ow on the space of lattices with a marked point, which is also known as the scenery �ow) is highlighted.
As in [?] we use a di�erent convention for rotations on the circle. Let α ∈ (0, 1) \ Q, I = [−1, α) and let
Tα (x) : [−1, α)→ [−1, α) be de�ned by

(2.2) Tα (x) =

{
x+ α x ∈ [−1, 0)

x− 1 x ∈ [0, α)
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Note that Tα may also be viewed as a rotation on the circle R/ ∼ where the equivalence relation ∼ on R is
given by x ∼ y ⇐⇒ x− y ∈ (1 + α)Z. It is conjugate to the standard rotation Rα′ on T , where α′ = α

1+α ,
by the map

(2.3) ψ(x) = (α′ + 1)x− 1

which maps the unit interval [0, 1] to the interval [−1, α].

Remark 2.1. In what follows, we slightly abuse notation by not distinguishing between the transformation
Tα and the transformation de�ned similarly on the interval (−1, α] by

T ′α (x) =

{
x+ α x ∈ (−1, 0] ;

x− 1 x ∈ [0, α) ;

when viewed as transformations on the circle, Tα and Tα′ coincide.

Note that given an irrational rotation Rα, we can assume without loss of generality that α < 1
2 (otherwise

consider the inverse rotation by 1− α). If we set

(2.4) α0 :=
α

1− α

then G(α) = Gi(α0) for any i ∈ N and thus, apart from the �rst entry, the continued fraction entries of α and
α0 coincide. If a0, a

′
0 are correspondingly the �rst entries in the expansion of α0 and α, then a0 = a′0 + 1.

Furthermore, given β ∈ (0, 1), let

(2.5) β0 := (α+ 1)β − 1.

Then the mean zero with a discontinuity at β0, given by

(2.6) ϕ (x) = 1[−1,β0) (x)− β0 + 1

α0 + 1

is the function that corresponds to the function fβ in the introduction under the conjugation between Rα
and Tα0 . Therefore, we are interested in the Birkho� sums

(2.7) ϕn (x) =

n−1∑
k=0

ϕ
(
T kα0

(x)
)
.

Henceforth, unless explicitly stated otherwise, we work with the transformation Tα0 . The sequences (an)
∞
n=0,(

pn
qn

)∞
n=0

will correspond to the sequence of entries and the sequence of partial convergents in the continued

fraction expansion of α = α0

1+α0
.

We denote by λ the Lebesgue measure on [−1, α0) normalized to have total mass 1.

2.2. Continued fraction renormalization and Ostrowski expansion. The renormalization procedure
is an inductive procedure, where at each stage we induce the original transformation Tα0

onto a subinterval
of the interval we induced upon at the previous stage. We denote by I(n) the nested sequence of intervals
which we induce upon, and by T (n) the �rst return map of Tα0

onto I(n). The nested sequence of intervals
I(n) is chosen in such a way that the induced transformations T (n) are all irrational rotations. The next
paragraph describes a step of induction given an irrational rotation Tαn on the interval In = [−1, αn) de�ned
by (2.2). The procedure is then iterated recursively by rescaling and performing the induction step once
again. In general, we keep to the convention that we use n as a superscript to denote objects related to the
non-rescaled nth step of renormalization, and as a subscript for the rescaled version.
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One step of renormalization. For an irrational αn ∈ (0, 1) let In := [−1, αn), Tαn : In → In de�ned by the
formula in (2.2) and βn ∈ In. Then Tαn is an exchange of two intervals of lengths α0 and 1 respectively
(namely [0, α0) and [−1, 0)). The renormalization step consists of inducing Tαn onto an interval I ′n, where
I ′n is obtained by cutting a half-open interval of size α0 from the left endpoint of the interval I0, i.e. −1, as
many times as possible in order to obtain an interval of the from [−α′n, αn) containing zero. More precisely,
let

an = [1/αn], α′n = 1− anαn
so that [−1, 0) contains exactly an intervals of lengths αn plus an additional remainder of length 0 < α′n < αn
(see Figure 2.1). If βn ∈ [−1,−α′n), let 1 ≤ bn ≤ an be such that βn belongs to the bthn copy of the interval
which is cut, otherwise set bn := 0, i.e. de�ne

(2.8) bn :=

{
[(βn − (−1))/αn] + 1 = [(1 + βn)/αn] + 1 if βn ∈ [−1,−α′n)

0 if βn ∈ [−α′n, αn).

Figure 2.1. One step of the Ostrowski renormalization algorithm.

For bn ≥ 1, let us de�ne xn to be the left endpoint of the copy of the interval which contains βn, otherwise,
if bn = 0, set xn := 0; let also β′n := βn − xn, so that if bn ≥ 1 then β′n is the distance of βn from the left
endpoint of the interval which contains it (Figure 2.1). In formulas

(2.9) xn :=

{
−1 + (bn − 1)αn if bn ≥ 1

0 if bn = 0
, β′n :=

{
βn + 1− (bn − 1)αn if bn ≥ 1

βn if bn = 0
.

Notice that xn = T bnαn(0) and hence in particular it belongs to the segment
{

0, Tαn(0), . . . , T anαn (0)
}
of the

orbit of 0 under Tαn .
Let I ′n = [−α′n, αn) and note that β′n ∈ I ′n and that the induced transformation obtained as the �rst return

map of Tαn on I ′n is again an exchange of two intervals, a short one [−α′n, 0) and a long one [0, αn). Hence, if
we renormalize and �ip the picture by multiplying by −αn, the interval I ′n is mapped to In+1 := (−1, αn+1]
, where

αn+1 :=
α′n
αn

=
1− anαn

αn
=

1

αn
−
[

1

αn

]
= G(αn)

and the transformation Tαn as �rst return on the interval I ′n is conjugated to Tαn+1
. We then set

βn+1 := −β
′
n

αn
= −βn − xn

αn
,

so that βn+1 ∈ In+1. Thus we have de�ned αn+1, βn+1 and Tαn+1 and completed the description of the step
of induction.

Notice that by de�nition of β′n and βn+1we have that

(2.10) βn =

{
−1 + (bn − 1)αn − αnβn+1 = xn − αnβn+1 if bn ≥ 1;

−αnβn+1 if bn = 0;

and hence, by using equation (2.8), we get

(2.11) βn+1 = H (αn, βn) :=

{
−
{
βn+1
αn

}
if bn ≥ 1;

− βn
αn

if bn = 0.

Repeating the described procedure inductively, one can prove by induction the assertions summarized in
the next proposition.
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Proposition 2.2. Let α(n) := α0 · ... · αn where αi are de�ned inductively from α0 by αn = G (αn−1) and

set α(−1) = 1. De�ne a sequence of nested intervals I(n), n = 0, 1, ..., by I(0) :=
[
−1, α(0)

)
, and

I(n) :=

{
(−α(n−1), α(n)] if n is odd;[
−α(n), α(n−1)) if n is even.

The induced map T (n) of Tα0 on I(n) is conjugated to Tαn on the interval In = [−1, αn) if n is even or to

Tαnon In = (−1, αn] if n is odd, where the conjugacy is given by ψn : In → I(n), ψn (x) = (−1)
n
α(n−1) (x).

Let β0 ∈ I(0) and let (bn)n and (βn)n be the sequences de�ned inductively1 by the formulas (2.8) and
(2.11). Then we have

(2.12) β0 =

∞∑
n=0

x(n), where x(n) = ψn (xn) =

{
(−1)

n
α(n−1) (−1 + (bn − 1)αn) 1 ≤ bn ≤ an

0 bn = 0

and the reminders are given by

(2.13)

∣∣∣∣∣β0 −
n∑
k=0

x(k)

∣∣∣∣∣ =
∣∣∣β(n+1)

∣∣∣ , where β(n) := ψn (βn) = (−1)
n
α(n−1)βn.

The expansion in (2.12) is an Ostrowski type expansion for β0 in terms of α0. We call the integers bn the
entries in the Ostrowski expansion of β0.

Remark 2.3. Partial approximations in the Ostrowski expansions have the following dynamical interpretation.
It well known that, for any n ∈ N, the �nite segment

{
T iα0

(0) : i = 0, ..., qn + qn−1 − 1
}
of the orbit of 0

under Tα0
(which can be thought of as a rotation on a circle) induces a partition of [−1, α0) into intervals of

two lengths (see for example [?]; these partitions correspond to the classical Rokhlin-Kakutani representation
of a rotation as two towers over an induced rotation given by the Gauss map, see also Section 2.3 and Remark
2.6). The �nite Ostrowski approximation

∑n
k=0 x

(k) gives one of the endpoints of the unique interval of this
partition which contains β0 (if it is the left or the right one depends on the parity as well as on whether bn
is zero or not). In particular, we have that

n∑
k=0

x(k) ∈
{
T iα0

(0) : i = 0, ..., qn + qn−1 − 1
}
∪ {α0} , n ∈ N ∪ {0} .

Remark 2.4. Since the points α(n) are all in the orbit of the point 0 by the rotation Tα0 , it follows from
the correspondence between Tα0 and Rα that the Ostrowski expansion of β0 appearing in the previous

proposition is �nite, i.e. β0 =
∑N
n=0 x

(n) for some N ∈ N if and only if β ∈ {nα mod 1 : n ∈ Z}. This
condition is well known to be equivalent to the function fβ (and hence also ϕ) being a coboundary (see [?]) .

It follows from the description of the renormalization algorithm that

(αn+1, βn+1) = Ĝ(αn, βn) := (G (αn) ,H (αn,βn))

where the function H is de�ned by (2.11). The ergodic properties of a variation on the map

(2.14) Ĝ : X → X, X = {(α, β) : α ∈ [0, 1) \Q, β ∈ [−1, α)}
were studied among others in [?].

Introduce the functions a, b : X → N de�ned by

a(α, β) := [1/α], b(α, β) :=

{
[(1 + β)/α] + 1 β ∈ [−1,−1 + a(α, β)α)

0 β ∈ [−1 + a(α, β)α, α)
.

The functions are de�ned so that the sequences (an)n and (bn)n of continued fractions and Ostrowski

entries are respectively given by an = a
(
Ĝn (α0, β0)

)
, bn = b

(
Ĝn (α0, β0)

)
for any n ∈ N.

1Note that given βn, formulas (2.8) and (2.11) determine �rst bn and then, as function of βn and bn, also βn+1 and hence
bn+1.
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By Remark 2.4, the restriction of the space X to

(2.15) X̃ :=

{
(α0, β0) ∈ X : β /∈ {nα mod 1} for α =

α0

α0 + 1
, β =

β0 + 1

α+ 1

}
is invariant with respect to Ĝ and we partition this space into three sets XG, XB− , XB+

⊂ X̃ de�ned by

(2.16)
XG := {(α, β) : b (α, β) ≥ 1} XB := {(α, β) : b (α, β) = 0}
XB+

:= XB ∩ {(α, β) : β ≥ 0} XB− := XB ∩ {(α, β) : β < 0}

Explicitly, in terms of the relative position of α, β, these sets are given by

XG =
{

(α, β) ∈ X̃ : β ∈ [−1,−1 + a (α, β) α)
}
,

XB− =
{

(α, β) ∈ X̃ : β ∈ [−1 + a (α, β) α, 0)
}
,

XB+ =
{

(α, β) ∈ X̃ : β ∈ [0, α)
}
.

The reason for the choice of names G, B−, B+ for the thee parts of parameter space, which stand for Good
(G) and Bad (B), where Bad has two subcases, B− and B+ (according to whether β is positive or negative),
will be made clear in Section 4.1.

2.3. Description of the Kakutani-Rokhlin towers obtained from renormalization. We assume
throughout the present Section and Sections 2.4, 2.5 that we are given a �xed pair (α0, β0) ∈ X̃. The
symbols qn used in this Section refer to the denominators of the nth convergent in the continued fraction
expansion of α, where α is related to α0 via (2.4).

The renormalization algorithm described above de�nes a nested sequence of intervals I(n). We describe
here below how the original transformation Tα0 can be represented as a union of towers in a Kakutani

skyscraper (the de�nition is given below) with base I(n) ; the tower structure of the skyscraper corresponding
to the (n+1)th stage of renormalization is obtained from the towers of the previous skyscraper corresponding
to the nth stage by a cutting and stacking procedure. We will use these towers to describe what we call
an adic symbolic coding of the interval I = [−1, α0) (see section 2.4). In what follows, we give a detailed
description of the tower structure and the coding.

Let us �rst recall that if a measurable set B ⊂ [−1, α0) and a positive integer h are such that the union⋃h−1
i=0 T

i
α0
B is disjoint, we say that the union is a (dynamical) tower of base B and height h. The union

can indeed be represented as a tower with h �oors, namely T iα0
B for i = 0, . . . , h − 1, so that Tα0

acts by
mapping each point in each level except the last one, to the point directly above it. A disjoint union of
towers is called a skyscraper (see for example [?]). A subtower of a tower of base B and height h is a tower
with the same height whose base is a subset B′ ⊂ B.

As it was explained in the previous section, the induced map of Tα0 on I
(n) is an exchange of two intervals,

a long and a short one. If n is even, the long one is given by
[
−α(n−1), 0

)
and the short one by

[
0, α(n)

)
.

If n is odd the long and short interval are respectively given by
[
0, α(n−1)) and [−α(n), 0

)
. In both cases,

these are the preimages of the intervals [−1, 0) and [0, αn) under the conjugacy map ψn : I(n) → In given in
Proposition 2.2. Notice also that β(n) = ψ−1n (βn), the non rescaled marked point corresponding to the point
βn ∈ In, further divides the two mentioned subintervals of I(n) into three, by cutting either the long or the

short into two subintervals. We denote these three intervals I
(n)
M , I

(n)
L and I

(n)
S , where the letters M,L, S,

respectively correspond to middle (M), long (L) and short (S), and I
(n)
M denotes the middle interval, while

I
(n)
L and I

(n)
S denote (what is left of) the long one and the short one, after removing the middle interval.

Explicitly, it is convenient to describe the intervals in terms of the partition XG, XB− , XB+
de�ned in the

end of the previous section. Thus, set
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I
(n)
L = ψ−1n ([−1, βn)) , I

(n)
M = ψ−1n ([βn, 0)) , I

(n)
S = ψ−1n ([0, αn)) if (αn, βn) ∈ XG

⋃
XB− ,

I
(n)
L = ψ−1n ([−1, 0)) , I

(n)
M = ψ−1n ([0, βn)) , I

(n)
S = ψ−1n [βn, αn) if (αn, βn) ∈ XB+ .

We claim that the �rst return time of Tα0 to the interval I(n) is constant on the subintervals I
(n)
L , I

(n)
M

and I
(n)
S . Moreover, the �rst return time over I

(n)
L and I

(n)
S equals to qn and qn−1 respectively, while the �rst

return time over I
(n)
M equals either qn or qn−1, depending on whether β(n) ∈

[
−α(n−1), 0

)
or β(n) ∈

[
0, α(n)

)
and hence on whether the middle interval was cut from the long or the short interval respectively. For

J ∈ {L,M,S}, let us denote by h(n)J the �rst return time of I
(n)
J to I(n) under Tα0

and let us denote by Z
(n)
J

the tower with base I
(n)
J and height h

(n)
J .

Let us how describe how the tower structure at stage n+ 1 of the renormalization is related to the tower
structure at stage n. We will describe in detail as an example the particular case where n is odd and
β(n) ∈

[
−α(n−1),−α(n)

)
(i.e. β(n) /∈ I(n+1)), or equivalently (αn, βn) ∈ XG (see also Figure 2.2). The

other cases are summarized in Proposition 2.5 below. In the considered case, the heights h
(n)
J of the three

towers Z
(n)
J , J ∈ {L,M,S} , at stage n are given by h

(n)
J = qn for J ∈ {M,L} and h

(n)
S = qn−1. By

the structure of the �rst return map T (n), the intervals
(
T (n)

)i (
I
(n)
S

)
, i = 1, ..., an partition the interval[

−α(n−1),−α(n)
)

= I(n) \ I(n+1) into intervals of equal length, and it follows that the �rst return time of

Tα0 is constant on I
(n)
S and equals to

an · h(n)L + h
(n−1)
S = anqn + qn−1 = qn+1.

Figure 2.2. The tower structure at step n and n + 1 in the case when (αn, βn) ∈ XG. In
this example an = 4 and bn = 3.

It also follows that the tower over I
(n)
S ⊂ I(n+1) at stage n + 1 is obtained by stacking the subtowers

over the intervals
(
T (n)

)i (
I
(n)
S

)
on top of the tower Z

(n)
S (as shown in Figure 2.2). By construction, the

point β(n+1) is obtained by vertically projecting the point β(n) from its location in the tower over I
(n)
S

down to the interval I
(n)
S . According to our de�nitions, β(n+1) divides I

(n)
S into I

(n+1)
L =

[
β(n), α(n−1)) and

I
(n+1)
M =

[
0, β(n)

)
. As we have seen, the height of the towers at stage n + 1 over the intervals I

(n+1)
M and

I
(n+1)
L is the same and equals qn+1, but the composition of the towers is di�erent. The tower Z

(n+1)
M is

obtained by stacking, on top of the bottom tower Z
(n)
S , �rst bn subtowers of Z

(n)
L and then an−bn subtowers

of Z
(n)
M on top of them; Z

(n+1)
L has a similar structure, with the tower Z

(n)
S in the bottom, but with bn − 1

subtowers of Z
(n)
L on top and then an − bn + 1 subtowers of Z

(n)
M stacked over (see Figure 2.2). The tower

over I
(n+1)
S = I

(n)
M remains unchanged, i.e Z

(n+1)
S = Z

(n)
M .

It is convenient to describe the tower structure in the language of substitutions. Let us recall that a
substitution τ on a �nite alphabet A is a map which associates to each letter of A a �nite word in the
alphabet A. To each (α, β) with β rational or α, β, 1 linearly independent over Q, we associate a sequence
(τn)n of substitutions over the alphabet {L,M,S}, where for J ∈ {L,M,S},

τn(J) = J0J1 · · · Jk, where J, J0, . . . , Jk ∈ {L,M,S},

if and only if the tower Z
(n+1)
J consists of subtowers of Z

(n)
Ji

, i = 0, ..., k stacked on top of each other in the

speci�ed order, i.e. the subtower of Z
(n)
Ji+1

is stacked on top of Z
(n)
Ji

. More formally,

(2.17)

τn(J) = J0J1 · · · Jk ⇔ h
(n+1)
J =

k∑
j=0

h
(n)
Jj

and (T (n))i(x) ∈ I(n)Ji
∀x ∈ I(n+1)

J , i = 0, ..., k.
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For example, in the case discussed above, since the tower Z
(n+1)
M is obtained by stacking, on top of each

other, in order, Z
(n)
S , then bn subtowers of Z

(n)
L and then an − bn subtowers of Z

(n)
M , we have

τn(M) = S L · · · L︸ ︷︷ ︸
bn times

M · · · M︸ ︷︷ ︸
an−bn times

.

We will use the convention of writing Jn for the block J · · · J where the symbol J is repeated n times. With
this convention, the above substitution can be written τn(M) = SLbnMan−bn .

If ω is a word ω = J0J1 · · · Jkwhere we will denote by ωi the letter indexed by 0 ≤ i<|ω|. Using this
notation, we can rewrite (2.17) as

h
(n+1)
J =

|ω|−1∑
i=0

h
(n)
τn(J)i

.

We summarize the tower structure and the associated sequence of substitutions in the following proposi-
tion. The substitution τn is determined by the location of β(n) ∈ I(n), or equivalently, by the non-rescaled
parameters (αn, βn) and one can check that there are three separate cases corresponding to the parameters
being in XG, XB− or XB+

. One of the cases was analyzed in the discussion above, while the other cases can
be deduced similarly, and the proof of the proposition is a straightforward induction on n.

Proposition 2.5. The �rst return time function of Tα0 to I(n) is constant on each of the three intervals

I
(n)
J , J ∈ {L,M,S}. Thus, for n = 0, 1, 2, ...,

I(0) =
⋃

J∈{L,M,S}

Z
(n)
J where Z

(n)
J =

h
(n)
J −1⋃
i=0

T iα0
I
(n)
J

where h
(n)
J is the value of the �rst return time function on I

(n)
j , which is given by

h
(n)
L = qn, h

(n)
S = qn−1, h

(n)
M =

{
qn if βn ∈ [−1, 0)

qn−1 if βn ∈ [0, αn)
.

The sequence of substitutions associated to the pair (α, β) is given by the formulas, determined by the following
cases

• If (αn, βn) ∈ XG 
τn (L) = SLbn−1Man−bn+1

τn (M) = SLbnMan−bn

τn (S) = M

• If (αn, βn) ∈ XB− 
τn (L) = SLan

τn (M) = M

τn (S) = L

• If (αn, βn) ∈ XB+ 
τn (L) = SLan

τn (M) = MLan

τn (S) = L

Remark 2.6. It can be shown that due to irrationality of α, the levels of the towers Z
(n)
J , J ∈ {L,M,S}

form an increasing sequence of partitions that separates points and hence generates the Borel σ-algebra on
[−1, α0) (see for example [?]).
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Let An, n ∈ N, be the 3 × 3 incidence matrix of the substitution τn with entries indexed by {L,M,S},
where the entry indexed by (J1, J2) , which we will denote by (An)J1,J2 , gives the number of subtowers

contained in Z
(n)
J2

among the subtowers of level n which are stacked to form the tower Z
(n+1)
J1

. Equivalently,
the entry (An)J1,J2 gives the number of occurrences of the letter J2 in the word τn (J1). If we adopt the
convention that the order of rows/columns of An corresponds to L,M,S, it follows from Proposition 2.5 that
these matrices are then explicitly given by:

(2.18) An =

bn − 1 an − bn + 1 1
bn an − bn 1
0 1 0

 if (αn, βn) ∈ G,

(2.19) An =

an 0 1
0 1 0
1 0 0

 if (αn, βn) ∈ B−,

(2.20) An =

an 0 1
an 1 0
1 0 0

 if (αn, βn) ∈ B+.

In particular, if we denote by h(n) the column vector of heights towers, i.e. the transpose of
(
h
(n)
L , h

(n)
M , h

(n)
S

)
,

it satis�es the recursive relations

(2.21) h(n+1) = Anh
(n), n ∈ N ∪ {0} .

Remark 2.7. We remark brie�y for the readers familiar with the Vershik adic map and the S-adic formalism
(even though it will play no role in the rest of this paper), that the sequence (τn)n also allows to represent the
map Tα0

as a Vershik adic map. The associated Bratteli diagram is a non-stationary diagram, whose vertex
sets Vn are always indexed by {L,M,S} with (An)J1,J2 edges from J1 to Jk; the ordering of the edges which
enter the vertex J at level n is given exactly by the substitution word τn(J). We refer the interested reader
to the works by Vershik [?] and to the survey paper by Berthe and Delecroix [?] for further information on
Vershik maps, Brattelli diagrams and S-adic formalism.

2.3.1. Special Birkho� sums. Let us consider now the function ϕ de�ned by (2.6) which has a discontinuity
at 0 and at β0. In order to study its Birkho� sums ϕn (de�ned in (2.7)) , we will use the renormalization

algorithm described in the previous section. Under the assumption that (α, β) ∈ X̃, ϕ determines a sequence
of functions ϕ(n), where ϕ(n) is a real valued function de�ned on I(n) obtained by inducing ϕ on I(n), i.e.
by setting

(2.22) ϕ(n)(x) =

h
(n)
J −1∑
i=0

ϕ(Tα
i(x)), if x ∈ I(n)J .

The function ϕ(n) is what Marmi-Moussa-Yoccoz in [?] started calling special Birkho� sums: the value

ϕ(n)(x) gives the Birkho� sum of the function ϕ along the orbit of x ∈ I(n)J until its �rst return to I(n), i.e.
it represents the Birkho� sum of the function along an orbit which goes from the bottom to the top of the

tower Z
(n)
J .

One can see that since ϕ(0) := ϕ has mean zero and a discontinuity with a jump of 1 at β(0) := β0, its
special Birkho� sums ϕ(n), n ∈ N, again have mean zero and a discontinuity with a jump of 1. The points
β(n), n ∈ N, are de�ned in the renormalization procedure exactly so that ϕ(n) has a jump of one at β(n).

Moreover, the function ϕ is constant on each level of the towers Z
(n)
J , J ∈ {L,M,S}, n ∈ N ∪ {0}, and

therefore, it is completely determined by a sequence of vectors(
ϕ
(n)
L , ϕ

(n)
M , ϕ

(n)
S

)
, n ∈ N ∪ 0,
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where ϕ
(n)
J = ϕ(n) (x), for any x ∈ I(n)J . It then follows immediately from the towers recursive structure (see

equation (2.17)) that the functions ϕ(n) also satisfy the following recursive formulas given by the substitutions
in Proposition 2.5:

ϕ
(n+1)
J =

k∑
i=0

ϕ
(n)
Ji

if τn(J) = J0 · · · Jk.

We �nish this section with a few simple observations on the heights of the towers and on special Birkho�
sums along these towers that we will need for the proof of the main result. Let (α0, β0) ∈ X̃ be the parameters
associated to a given pair (α, β) via the relations (2.4) and (2.5). Under the assumption that α is badly
approximable, since the heights of the towers appearing in the renormalization procedure satisfy (2.21) and
0 ≤ bn ≤ an are bounded, there exists a constant C such that

(2.23) C−1n ≤ log h
(n)
J ≤ Cn for anyn ∈ N.

It follows that for any m ∈ N, there exists a constant M = M (m), such that if |k − n| ≤ m, then

(2.24)
1

M
<
h
(n)
J

h
(k)
K

< M for anyJ,K ∈ {L,M,S} .

Moreover, by (2.1), the special Birkho� ϕ
(n)
J are uniformly bounded, i.e.

(2.25) sup
{∣∣∣ϕ(n)

J

∣∣∣ : J ∈ {L,M,S} , n ∈ N
}
<∞.

2.4. The (adic) symbolic coding. The renormalization algorithm and the formalism de�ned above lead
to the symbolic coding of the dynamics of Tα0 described in the present section. This coding is exploited in
Section 2.5 to build an array of non-homogeneous Markov chains which models the dynamics.

De�nition 2.8. (Markov compactum) Let (Sn)
∞
n=1 be a sequence of �nite sets with supi |Si| < ∞ and let(

A(n)
)∞
n=1

be a sequence of matrices, such that A(n) is an |Sn| × |Sn+1| matrix whose entries A
(n)
s,t ∈ {0, 1}

for any (s, t) ∈ Sn × Sn+1. The Markov compactum determined by A(n) is the space

X =

{
ω ∈

∞∏
n=1

Sn : A(n)
sn,sn+1

= 1 for all n ∈ N

}
.

Figure 2.3. Labeling of the subtowers of the towersZ
(n)
J by labels (J, i), J ∈ {L,M,S}.

To describe the coding, recall that for each n ∈ N, each tower Z
(n)
J , where J ∈ {L,M,S}, is obtained by

stacking at most an + 1 subtowers of the towers Z
(n−1)
K (the type and order of the subtowers is completely

determined by the word τn−1(J) given by the substitution τn−1 as described in Proposition 2.5). We will
label these subtowers by (J, i), where the index i satis�es 0 ≤ i ≤ an and indexes the subtowers from bottom
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to top: more formally, (J, i) is the label of the subtower of Z
(n)
J , with base (T (n−1))i(I

(n)
J ), which is the

(i + 1)th subtower from the bottom (see Figure 2.3). Thus, for a �xed n, denoting by |τn−1 (J)| the length
of the word τn−1 (J), the labels of the subtowers belong to

{(J, i) : J ∈ {L,M,S} , i = 0, ..., |τn−1 (J)| − 1} .
For α = α0

1+α0
= [a0, a1, . . . , an, . . . ] badly approximable, let amax be the largest of its continued fraction

entries and consider the alphabet

E = E(amax) = {L,M,S} × {0, · · · , amax}.

Remark 2.9. It is not necessary for α to be badly approximable in order for the construction of the present
section and the next section to be valid. If α is not badly approximable, de�ne E = {L,M,S}×{0, 1, ..., n, ...}
. This de�nition would make all statements of this and the following sections valid, without any further
changes.

De�nition 2.10. Given x ∈ [−1, α0), for each n ∈ N, x is contained in a unique tower Z
(n)
Jn(x)

for some

Jn (x) ∈ {L,M,S}, and furthermore in a unique subtower of stage n− 1 inside it, labeled by (Jn (x) , jn (x))
where 0 ≤ jn (x) ≤ an. Let Ψ : [−1, α0)→ E be the coding map de�ned by

Ψ(x) := (Jn (x) , jn (x)) ∈ EN.

Let us recall that for word ω in the alphabet E let us denote by ωi the letter in the word which is labeled
by 0 ≤ i <|ω| .

Proposition 2.11. The image of Ψ is contained in the subspace Σ ⊂ EN de�ned by

Σ :=
{

((J1, j1) , ..., (Jn, jn) , ...) ∈ EN : (τi (Ji+1))ji+1
= Ji, i = 1, 2, ...

}
.

The preimage under Ψ of any cylinder [(J1, j1) , ..., (Jn, jn)] := {ω ∈ Σ : ωi = (Ji, ji) , i = 1, ..., n} satisfying
the constraints (τi (Ji+1))ji+1

= Ji, i = 1, 2, ..., n− 1 is the set of all points on some level of the tower Z
(n)
Jn

,

i.e. there exists 0 ≤ i < h
(n)
Jn

such that

Ψ−1 ([(J1, j1) , ..., (Jn, jn)]) = T iα0

(
I
(n)
Jn

)
.

Moreover, Ψ is a Borel isomorphism between [−1, α0) and its image, where the Borel structure on the image
of Ψ is inherited from the natural Borel structure on EN arising from the product topology on EN.

Let

(2.26) Sn := {(J, j) ∈ E : ∃ω ∈ Σ s.t. ωn = (K, k)}
be the set of symbols which appear as nth coordinate in some admissible word in Σ, and note that the
de�nition of Σ shows that Σ is a Markov compactum with state space

∏∞
i=1 Si, given by a sequence of

matrices
(
A(n)

)T
indexed by Sn × Sn+1 such that A

(n)
(K,k),(J,j) = 1 if and only if (τn (J))j = K. Although

we do not need it in what follows, one can explicitly describe the image Σ′ ⊂ Σ of the coding map Ψ and
show that it is obtained from Σ by removing countably many sequences. We remarked in Remark 2.7 that
Tα is conjugated to a the Vershik adic map. Let us add that the map Ψ provides the measure theoretical
conjugacy.

Proof of Proposition 2.11. First we prove that the image of Ψ is contained in Σ. To see this, note that for x ∈
[−1, α0), (Jn (x) , jn (x)) = (K, k) means that x belongs to Z

(n)
K (since Jn (x) = K ) and (Jn+1 (x) , jn+1 (x)) =

(J, j) means that x belongs to the jth subtower of Z
(n+1)
J . Hence the jth subtower of Z

(n+1)
J must be contained

in Z
(n)
K . Recalling the de�nition of the substitutions (τn)n, this implies exactly the relation (τn (J))j = K,

which in turn implies that Ψ (x) ∈ Σ.
To prove the second statement, namely that cylinders correspond to �oors of towers, note that according

to our labeling of the towers, the set of all x such that (Jn (x) , jn (x)) = (Jn, jn) consists exactly of all points

which belong to h
(n−1)
K levels of the tower Z

(n)
Jn

, where K = (τn−1 (Jn))jn . Proceeding by induction, one
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sees that for any k = n− 1, . . . , 1, the set {x : (Ji (x) , ji (x)) = (Ji, ji) , i = k, ..., n} is the set of all points
contained in precisely h

(k−1)
K levels of the tower Z

(n)
Jn

, where K = (τk−1 (Jk))jk . Thus, since h
(0)
K = 1 for any

K ∈ {L,M,S}, Ψ−1 ([(J1, j1) , ..., (Jn, jn)]) is the set of all points on a single level of the tower Z
(n)
Jn

. This

argument shows that the levels of the towers Z
(n)
J , J ∈ {L,M,S} , are in bijective correspondence under the

map Ψ with cylinders of length n in Σ.
Finally, injectivity and bi-measurability of Ψ follow since the sequence of partitions induced by the tower

structure generate the Borel sets of the space [−1, α0) and separates points (see Remark 2.6). �

2.5. The Markov chain modeling towers. In what follows, we denote by µ be the push forward by the
map Ψ of the normalized Lebesgue measure λ on [−1, α0), i.e. the measure given by

(2.27) µ := λ ◦Ψ−1.

Moreover, for J ∈ {L,M,S} , let us de�ne also the conditional measures

(2.28) µJn ([(J1, j1) , ..., (Jn, jn)]) := µ ([(J1, j1) , ..., (Jn, jn)] |Jn = J ) .

We denote by Σn and En correspondingly, the restriction of Σ and E to the �rst n coordinates and we
endow these sets with the σ-algebras inherited from the Borel σ-algebra on EN. Let Sn be the set of states
appearing in the nth coordinate of Σ, de�ned by (2.26).

We de�ne a sequence of transition probabilities, or equivallently in this discrete case, stochastic matrices

p
(n)
(J,j),(K,k), where (J, j) ∈ Sn+1 and (K, k) ∈ Sn, and a sequence of probability distributions πn on Sn
which are used to de�ne a sequence of Markovian measures on Σn that model the dynamical renormalization
procedure. We refer to the sequence p(n) as the sequence of transition matrices associated to the pair
(α0, β0) ∈ X̃.

De�nition 2.12. For any n ∈ N and J, K ∈ {L,M,S}, if
τn (J) = J0 . . . Jl and τn−1 (K) = K0 . . .Km,

we de�ne

p
(n)
(J,j),(K,k) :=


h
(n−1)
Kk

h
(n)
K

if K = Jj and 0 ≤ j ≤ l, k ≤ m,

0 otherwise;

πn (K, k) :=

λ
(
Z

(n)
K

)
·
h
(n−1)
Kk

h
(n)
K

if 0 ≤ k ≤ m,

0 otherwise.

Moreover, for any (L, l) ∈ E, we set

πKn (L, l) :=


h
(n−1)
Kl

h
(n)
K

if 0 ≤ l ≤ m and L = K,

0 otherwise.
.

Remark 2.13. The rationale behind the de�nition of πn is that πn (K, k) is de�ned to be the λ- measure of

the piece of the tower Z
(n)
K labeled by (K, k); similarly p

(n)
(J,j),(K,k) is non zero exactly when the kth subtower

inside Z
(n)
J is contained in Z

(n−1)
K , in which case it gives the proportion of this kth subtower which is contained

in the subtower of Z
(n−1)
K labeled by (J, j).

The following Proposition identi�es the measures µn and µJn as Markovian measures on Σn generated by
the transition matrices and initial distributions indicated in the previous de�nition.

Proposition 2.14. For every n ∈ N, J ∈ {L,M,S} and every word ((J1, j1) , ..., (Jn, jn)) ∈ Σn we have

(2.29) µ ([(J1, j1) , ..., (Jn, jn)]) = πn (Jn, jn)

n−1∏
i=1

p
(i)
(Ji+1,ji+1),(Ji,ji)
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and

(2.30) µ ([(J1, j1) , ..., (Jn, jn)] |Jn = J ) = πJn (Jn, jn)

n−1∏
i=1

p
(i)
(Ji+1,ji+1),(Ji,ji)

.

Proof. By Proposition 2.11, Ψ−1 ([(J1, j1) , ..., (Jn, jn)]) is non empty if and only if the sequence (J1, j1) , ..., (Jn, jn)
satis�es the conditions (τi (Ji+1))ji+1

= Ji for i = 1, ..., n − 1, in which case it consists of the the set of all

points on a certain level of the tower Z
(n)
Jn

, i.e.

Ψ−1 ([(J1, j1) , ..., (Jn, jn)]) = T 1
α0

(
I
(n)
Jm

)
for some 0 ≤ l ≤ h(n)Jn

.

It follows from the de�nition (2.27) of the measure µ that

µ ([(J1, j1) , ..., (Jn, jn)]) = λ
(
I
(n)
Jn

)
=
λ
(
Z

(n)
Jn

)
h
(n)
Jn

.

Moreover, we get that the conditional measures µJn given by (2.28) satisfy

µJn ([(J1, j1) , ..., (Jn, jn)]) = µ ([(J1, j1) , ..., (Jn, jn)] |Jn = J ) =
1

h
(n)
Jn

.

Equations (2.29) now follow by de�nition of πn and p(n), which give that

p
(i)
(Ji+1,ji+1),(Ji,ji)

=
h
(i−1)
τi−1(Ji)ji

h
(i)
τi(Ji+1)ji+1

, πn (Jn, jn) = λ
(
Z

(n)
Jn

)
·
h
(n−1)
τn−1(Jn)jn

h
(n)
Jn

.

Hence, by the conditions (τi (Ji+1))ji+1
= Ji for i = 1, ..., n − 1 and recalling that Jn = J and h

(0)
K = 1 for

any K ∈ {L,M,S}, we have that

πn (Jn, jn)

n−1∏
i=1

p
(i)
(Ji+1,ji+1),(Ji,ji)

= λ
(
Z

(n)
Jn

)
·
h
(n−1)
Jn−1

h
(n)
Jn

(
n−1∏
i=2

h
(i−1)
Ji−1

h
(i)
Ji

)
1

h
(1)
J1

= λ
(
Z

(n)
J

)
.

Equations (2.30) follows in the same way by using the de�nition of πJn instead than πn .
Finally, if the sequence (J1, j1) , ..., (Jn, jn) does not satisfy the conditions (τi (Ji+1))ji+1

= Ji for i =

1, ..., n− 1,Ψ−1 ([(J1, j1) , ..., (Jn, jn)]) = ∅ (by Proposition 2.11, as recalled above) and by de�nition of p(n)

and πn, π
J
n , we get that the right hand sides in (2.4) and (2.32) are both zero, so equations (2.4) and (2.32)

hold in this case too. This completes the proof. �

For ω ∈ Σ, n ∈ N, we de�ne the coordinate random variables

(2.31) Xn (ω) := ωn

Since, all cylinders of the form [(J1, j1) , ..., (Jn, jn)], with ((J1, j1) , ..., (Jn, jn)) ∈ Σn generate the σ-algebra
of Σn, it immediately follows from Proposition 2.14 that for every n ∈ N, Xn, ..., X1 form a Markov chain
on Σn with respect to the measures µ, µJn with transition probabilities p(i), i = 1, ..., n − 1 and initial
distributions πn , πJn , respectively.

2.6. The functions over the Markov chain modeling the Birkho� sums. Let us now de�ne a
sequence of functions ξn : Sn → R that enables us to model the distribution of Birkho� sums. In section
2.3.1 we introduced the notion of special Birkho� sums of ϕ, i.e. Birkho� sums of ϕ along the orbit of a

point x in the base of a renormalization tower Z
(n)
J up to the height of the tower, see (2.22). We will consider

in this section intermediate Birkho� sums along a tower (of for short, intermediate Birkho� sums), namely

Birkho� sums of a point at the base of a tower Z
(n)
J up to an intermediate height, i.e. sums of the form

j∑
k=0

ϕ
(
T kα0

(x)
)
, where x ∈ I(n)J , 0 ≤ j < h

(n)
J , n ∈ N ∪ {0} , J ∈ {L,M,S} .
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The crucial Proposition (2.16) shows that intermediate Birkho� sums can be expressed as sums of the
following functions {ξn} over the Markov chain (Xn).

De�nition 2.15. For n ∈ N, (J, j) ∈ Sn such that τn−1 (J) = J0 . . . Jl (note that this forces 0 ≤ j ≤ l =
|τn−1 (J)|), if n ≥ 2 set

ξn ((J, j)) =

j−1∑
i=0

ϕ
(n−1)
Ji

where, by convention, a sum with i that runs from 0 to −1 is equal to zero. If n = 1, set

ξ1 ((J, j)) =

j∑
i=0

ϕ
(0)
Ji
.

We then have the following proposition.

Proposition 2.16. Let J ∈ {L,M,S} and let ,xJ ∈ I(n)J . Then for any A ∈ B (R),

1

h
(n)
J

#

{
0 ≤ j ≤ h(n)J − 1 :

j∑
k=0

ϕ
(
T kα0

(xJ)
)
∈ A

}
= µJn

(
n∑
k=1

ξk (Xk) ∈ A

)
.

Proof. We show by induction on n that, for any J ∈ {L,M,S}, any x ∈ I(n)J and 0 ≤ l ≤ h
(n)
J − 1, we have

that

(2.32)

l∑
k=0

ϕ
(
T kα0

(x)
)
∈ A ⇐⇒

n∑
k=1

ξk ((Jk, jk)) ∈ A.

where [ω] = [(J1, j1) , ..., (Jn, jn)] is the (unique) cylinder containing T lα0
x. To see this, note �rst that for

n = 1, J ∈ {L,M,S}, x ∈ I(1)J and 0 ≤ l ≤ h(1)J − 1, we have T lx ∈ Ψ−1 ([(J, l)]) and by de�nition of ξ1,

ξ1 ((J, l)) =

l∑
k=1

ϕ
(0)
(τ0(J))k

=

l−1∑
k=0

ϕ
(
T kα0

(x)
)
,

which proves the claim for n = 1. Now, assume that (2.32) holds for some n ∈ N. Then for J ∈ {L,M,S},
x ∈ I

(n+1)
J , and 0 ≤ l ≤ h

(n+1)
J − 1, let [ω] = [(J1, j1) , ..., (Jn+1, jn+1)] be the unique cylinder such that

T lα0
(x) ∈ Ψ−1 ([ω]). Then Jn = J and by Proposition 2.11 Ψ−1 ([ω]) = T lα0

(IJ). It follows from de�nition
of the map Ψ, that Jn+1 = J and

jn+1−1∑
i=0

h
(n)
(τ(J))i

< l ≤
jn+1∑
i=0

h
(n)
(τ(J))i

.

Thus, setting l′ = l −
∑jn+1−1
i=1 h

(n)
(τ(J))i

, x′ =
(
T (n)

)jn+1
(x) and using the de�nition of ξn+1, we may write

(2.33)

l∑
k=0

ϕ
(
T kα0

(x)
)

=

jn+1−1∑
k=0

ϕ
(n)
(τn(J))k

+

l′∑
k=0

ϕ
(
T kα0

(x′)
)

= ξn+1 ((J, jn+1)) +

l′∑
k=0

ϕ
(
T kα0

(x′)
)
.

The previous equality is obtained by splitting the Birkho� sum up to l of a point at the base of the tower

Z
(n+1)
Jn+1

into special Birkho� sums over towers obtained at the nth stage of the renormalization proce-

dure and a remainder given by
∑l′

k=0 ϕ
(
T kα0

(x′)
)
. Now, by de�nition of the coding map Ψ, T l

′

α0
(x′) ∈

Ψ−1 ([(J1, j1) , ..., (Jn, jn)]). Thus, if for y ∈ R, we let A− y denote the set {a− y : a ∈ A}, (2.33) implies,

l∑
k=0

ϕ
(
T kα0

(x)
)
∈ A ⇐⇒

l′∑
k=0

ϕ
(
T kα0

(x′)
)
∈ A− ξn+1 (J, jn+1) .
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and the equality (2.32) now follows from the hypothesis of induction, which gives

l′∑
k=0

ϕ
(
T kα0

(x′)
)
∈ A− ξn+1 (J, jn+1) ⇐⇒

n∑
k=1

ξk (Xk (Jk, jk)) ∈ A− ξn+1 (J, jn+1) .

Since by Proposition 2.14, µJn ([ω]) = 1

h
(n)
J

for any ω ∈ Σn, and since by the proof of Proposition 2.11,

the levels of the tower Z
(n)
J are in bijective correspondence with cylinders of length n in Σn, the proof is

complete. �

3. the clt for markov chains

In the previous section we established that the study of intermediate Birkho� sums can be reduced to the
study of (in general) non-homogeneous Markov chains. In this section we establish some (mostly well-known)
statements about such Markov chains which we use in the proof of our temporal CLT. The main result which
we need is the CLT for non-homogeneous Markov chains. To the best of our knowledge, this was initially
established by Dobrushin [?, ?] (see also [?] for a proof using martingale approximations). Dobrushin's CLT
is not directly valid in our case (since it assumes that the contraction coe�cient is strictly less than 1 for
every transition matrix in the underlying chain, while under our assumptions this is only valid for a product
of a constant number of matrices). While the proof of Dobrushin's theorem can be reworked to apply to our
assumptions, we do not do it here, and instead use a general CLT for ϕ-mixing triangular arrays of random
variables by Utev [?].

3.1. Contraction coe�cients, mixing properties and CLT for Markov chains. In this section we
collect some probability theory results for (arrays of) non-homogeneous Markov chains that we will use in
the next section.

Let (Ω,B, P ) be a probability space and let F , G be two sub σ-algebras of B. For any σ-algebra A ⊂ B,
denote by L2 (A) the space of square integrable, real functions on Ω, which are measurable with respect
to A. We use two measures of dependence between F and G, the so called ϕ-coe�cient and ρ-coe�cient,
de�ned by

ϕ (F ,G) := sup
A∈G,B∈F

|P (A |B )− P (A)|

and

ρ (F ,G) := sup
f∈L2(F),g∈L2(G)

∣∣∣∣∣ Cov (f, g)√
V ar (f)V ar (g)

∣∣∣∣∣ .
It is a well-known fact (see [?]) that

(3.1) ρ (F ,G) ≤ 2 (ϕ (F ,G))
1
2 .

In what follows, let Y =
{
Y

(n)
1 , ..., Y

(n)
n : n ≥ 1

}
be a triangular array of mean zero, square integrable

random variables such that the random variables in each row are de�ned on the same probability space
(Ω,B, P ). For any set Y of random variables de�ned on (Ω,B, P ), let us denote by σ (Y) the σ-algebra
generated by all the random variables in Y.

Set Sn =
∑n
k=1 Y

(n)
k and en = E (Sn), σn =

√
V ar (Sn). For any n, k ∈ N let

ϕn (k) := sup
1≤s,s+k≤n

ϕ
(
σ
(
Y

(n)
i , i ≤ s

)
, σ
(
Y

(n)
i , i ≥ s+ k

))
,

ϕ (k) := sup
n
ϕn (k) .

The array Y is said to be ϕ-mixing if ϕ (k)→ 0 as k tends to in�nity.

The following CLT for ϕ-mixing arrays of random variables, which follows from a more general CLT for
such arrays in [?] is the main result that we use to prove our distributional CLT.
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Theorem 3.1. Let Y be a ϕ-mixing array of square integrable random variables and assume that

(3.2) lim
n→∞

σ−2n

n∑
k=1

E

(
Y

(n)
k 1{∣∣∣Y (n)

k

∣∣∣>εσn}
)

= 0

for every ε > 0. Then
Sn − en
σn

converges in law to the standard normal distribution.

Let T, S be �nite sets and P a stochastic matrix with entries indexed by T×S. The contraction coe�cient
of P is de�ned by

(3.3) τ (P ) =
1

2
sup

x1,x2∈T

∑
s∈S
|Px1,s − Px2,s| .

It is not di�cult to see that τ (P ) = 0 if and only if the entry Ps,t does not depend on s and that

(3.4) τ (PQ) ≤ τ (P ) τ (Q)

for any pair of stochastic matrices P and Q such that their product is de�ned.

For n ∈ N, let X(n)
1 , ..., X

(n)
n be a Markov chain with each X

(n)
i taking values in a �nite state space Si,

determined by an initial distribution πn and transition matrices P
(n)
i , i = 1, ...n (thus, each matrix P

(n)
i has

dimension |Si| × |Si+1|).

Proposition 3.2. Assume that there exist 0 ≤ δ < 1 and s ∈ N such that for every n ∈ N

τ
(
P

(n)
k · · ·P (n)

k+s

)
< δ, for any 1 ≤ k ≤ n− s.

Then X = X
(n)
0 , ..., X

(n)
n is ϕ-mixing and ϕ (k) tends to 0 as k →∞ with exponential rate.

Proof. This is a direct consequence of the inequality

ϕ
(
σ
(
Y

(n)
i , i ≤ j

)
, σ
(
Y

(n)
i , i ≥ j + k

))
≤ τ

(
P

(n)
j ...P

(n)
j+k

)
for 1 ≤ j ≤ n− k

(see relation (1.1.2) and Proposition 1.2.5 in [?]) and the fact that τ
(
P

(n)
j ...P

(n)
j+k

)
≤ δ[

k
s ], which immediately

follows from the assumption and (3.4). �

Now, let ξ
(n)
i : Si → R , with 1 ≤ i ≤ n for any n ∈ N, be an array of functions and set Y (n)

i = ξ
(n)
i

(
X

(n)
i

)
.

Henceforth, we assume that

(3.5) sup
{∣∣∣ξ(n)i (s)

∣∣∣ : n ∈ N, i = 0, ..., n, s ∈ Si
}

= M <∞.

An application of Theorem 3.1 yields the following corollary.

Corollary 3.3. Under the conditions of Proposition 3.2, assume further that and σn → ∞. Then Sn−en
σn

converges in law to the standard normal distribution.

Proof. It is enough to remark that the condition (3.2) in Theorem 3.1 holds trivially for n large in virtue of
the bound in (3.5) since by assumption the variance σn →∞. �

Let now π̃n be a sequence of probability distributions on S1, and let X̃
(n)
1 , ..., X̃

(n)
n be an array of Markov

chains generated by initial distributions π̃n and transition matrices P
(n)
i . Let S̃n =

∑n−1
k=0 ξi

(
X̃i

)
and let

ẽn = E
(
S̃n

)
, σ̃n =

√
V ar

(
S̃n

)
.

Proposition 3.4. Under the conditions of Proposition 3.2, there exists a constant C, independent of the
sequences πn and π̃n, such that |en − ẽn| ≤ C and

∣∣σ2
n − σ̃2

n

∣∣ ≤ C for all n ∈ N.
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Proof. The assumption implies that there exists a constant M and a sequence of rank 1 stochastic matrices

(i.e stochastic matrices with all rows being identical) V
(n)
i such that

sup


∥∥∥∥∥∥V (n)

i −
i∏

j=1

P
(n)
j

∥∥∥∥∥∥ , i = 1, ..., n, n ∈ N

 ≤Mδ
i
s

(see [?, Chapter 4, Cor. 2]), where for two matrices P , Q indexed by S×T , ‖P −Q‖ = max {|Ps,t −Qs,t| : (s, t) ∈ S × T}.
Using (3.5) it follows that there exists a constant C̃ which depends only on the array of matrices P

(n)
i and

functions ξ
(n)
i , such that

∣∣∣E (ξ(n)i (Xi)
)
− E

(
ξ
(n)
i

(
X̃i

))∣∣∣ =

∣∣∣∣∣∑
s∈S1

∑
t∈Si

(πn (s)− π̃n (s))
(
P

(n)
1 ...P

(n)
i−1

)
s,t
· ξ(n)i (t)

∣∣∣∣∣ ≤ C̃δ ns .
Since the right hand side of the last inequality is a general term of a summable geometric series, we have
proved that there exists a constant C, such that |en − ẽn| ≤ C for all n ∈ N.

To prove the inequality for the variances, we �rst note that it follows from (3.1) and (3.5) that there exists
a constant C ′ independent of πn, such that

(3.6)

∣∣∣∣∣∣
∑

1≤i<j≤n

Cov
(
ξ
(n)
i

(
X

(n)
i

)
· ξ(n)j

(
X

(n)
j

))∣∣∣∣∣∣ < C ′

for all n ∈ N. An analogous inequality hence holds also for the array X̃
(n)
i instead of X̃

(n)
i , so that

(3.7)

∣∣∣∣∣∣
∑

1≤i<j≤n

Cov
(
X

(n)
i , X

(n)
j

)
− Cov

(
X̃

(n)
i , X̃

(n)
j

)∣∣∣∣∣∣ < 2C ′.

Moreover, since supn |µn − µ̃n| <∞, one can also prove that

(3.8) sup
n

∣∣∣∣∣
n∑
i=1

V ar
(
ξ
(n)
i

(
X

(n)
i

))
− V ar

(
ξ
(n)
i

(
X̃

(n)
i

))∣∣∣∣∣ <∞.
Now, write

∣∣σ2
n − σ̃2

n

∣∣ ≤ ∣∣∣∣∣
n∑
i=1

(
V ar

(
ξ
(n)
i

(
X

(n)
i

))
− V ar

(
ξ
(n)
i

(
X̃

(n)
i

)))∣∣∣∣∣
+

∣∣∣∣∣∣
∑

1≤i<j≤n

Cov
(
ξ
(n)
i

(
X

(n)
i

)
, ξ

(n)
j

(
X

(n)
j

))
− Cov

(
ξ
(n)
i

(
X̃

(n)
i

)
, ξ

(n)
j

(
X̃

(n)
j

))∣∣∣∣∣∣ .
The proof of the Lemma hence follows by (3.7) and (3.8). �

4. proof of the temporal clt

In this section we give the proof of Theorem 1.1. We need to show that we can apply the results on
Markov chains summarized in the previous section (and in particular Corollary 3.3) to the Markov chains
that model the dynamics. In order to check that the required assumptions are veri�ed, we �rst show, in
section 4.1 a result on positivity of the product of �nitely many transition matrices, which follows from the
assumption that α is badly approximable and β is badly approximable with respect to α. Then, in section
4.2 we prove that the variance grows. Finally, the proof of the Theorem is given in section 4.3.
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4.1. Positivity of products of incidence matrices. Let us recall that in Section 2.2 we described a
renormalization procedure that, to a pair of parameters (α, β) (under the assumption that (α, β) ∈ X̃), in
particular associates a sequence (An)n of matrices (given by equations (2.18), (2.19) and (2.20) respectively),
which are the incidence matrices of the sequence of substitutions (τn)n which describe the tower structure.

In this section, we develop conditions on the pair (α, β) ∈ X̃ that ensure that we may split the sequence of
incidence matrices (An)n associated to (α, β) into consecutive blocks of uniformly bounded length, so that
the product of matrices in each block is strictly positive. This fact is used for showing that the Markov chain
associated to (α, β) satis�es the assumption of the previous section needed to prove the CLT.

Under the assumption that (α, β) ∈ X̃, the orbit Ĝn (α, β) of the point (α, β) under the transformation Ĝ
de�ned in (2.14) is in�nite and one can consider its itinerary with respect to the partition

{
XG,XB− , XB+

}
de�ned in Section 2.2: the itinerary is the sequence (sn)n ∈ SN∪{0} , where S := {G,B−, B+} , de�ned by

(4.1) s = J ∈ {G,B−, B+} ⇐⇒ Ĝn (α, β) ∈ XJ , n = 0, 1, 2, ....

We will call S := {G,B−, B+} the set of states and we will say that s (α, β) := (sn)n ∈ S :N∪{0} the

in�nite sequence of states associated to (α, β) ∈ X̃. From the de�nitions in Section 2.2, sn = G (or B−, B+

respectively) if and only if the incidence matrix An is of the form (2.18) (or (2.19), (2.20) respectively). It
can be easily deduced from the description of the renormalization procedure that not all sequences in SN are
itineraries of some pair (α, β) ∈ X̃. The sequences s ∈ SN∪{0} such that s = s (α, β) , for some (α, β) ∈ X̃)

form a stationary Markov compactum S̃⊂ SN∪{0} with state space determined by the graph,

G
))

88 B+ff
((
B−hh

namely s = (sn)n ∈ S̃ if and only if for any n ≥ 0 there is an oriented edge from the state sn ∈ S to the
state sn+1 ∈ S in the graph above.

Since at this point we are interested solely in positivity of the incidence matrices and not in the values
themselves, we de�ne a function F : S →M3 (Z), where M3 (Z) are 3× 3 matrices, by

F (s) =

0 1 1
1 0 1
0 1 0

 if s = G;(4.2)

F (s) =

1 0 1
0 1 0
1 0 0

 if s=B−;

F (s) =

1 0 1
1 1 0
1 0 0

 if s=B+.

Note that F is de�ned in such a way, so that some entry of the matrix F (sn) is 1, if and only if the
corresponding entry of incidence matrix An which corresponds to the state s (α, β) := (sn)n has a non-zero
value, independently of an and bn (for example an and an− bn + 1 are always greater than 1 or bn ≥ 1 when
(α, β) ∈ G). Note that the other implication is not necessarily true, namely some entries of F (s) could be 0
even if the corresponding entry of the incidence matrices are positive (in such cases the positivity depends
on the values of an and bn, for example an − bn is zero if an = bn). Thus, for any n, k ∈ N

⋃
{0},

F (sn+k)F (sn+k−1) ...F (sn) > 0 =⇒ An+kAn+k−1...An > 0.

It immediately follows from the topology of the transition graph that every itinerary s ∈ SN∪{0} can be
written in the form

(4.3) s = W1 (B−B+)
n1 W2 (B−B+)

n2 ...Wk (B−B+)
nk ...

where Wk, k ∈ N are words in the alphabet S which do not contain B− (i.e. they are words in G and B+),
and Wk is not empty for k ≥ 2. Note that it may be that the number of appearances of B− in the above
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representation is �nite. This means that there exists K such that nk = 0 for k ≥ K and in this case the
above representation reduces to

(4.4) s = W1 (B−B+)
n1 W2 (B−B+)

n2 ...WK (B−B+)
nK WK+1

where the length of WK+1 is in�nite.

De�nition 4.1. Let (α, β) ∈ X̃. We say that β is of Ostrowski bounded type with respect to α if the
decomposition of s (α, β) ∈ SN given by (4.3) or (4.4) satis�es sup {nk} = M < ∞, where the supremum is
taken over k ∈ N in the �rst case, and over k ∈ {1, ...,K} in the second case. We say in both cases that β is
of Ostrowski bounded type of order M .

Proposition 4.2. Let β be of Ostrowski bounded type of order M with respect to α and let (Ai)i bee i the
sequence of incidence matrices associated to (α, β) by the Ostrowski renormalization. Then for any k, and
any n ≥ 5M , we have that Ak+nAk+n−1...Ak > 0.

Proof. LetW1 (B−B+)
n1 W2 (B−B+)

n2 ...Wk (B0B1)
nk ... the decomposition of s (α, β) described above. Di-

rect calculation gives that the product of matrices which corresponds to an admissible word of length 5 (or
more) which does not contain B− is strictly positive. Also, any word of length 5 which starts with B−B+G
gives a transition matrix which is strictly positive. Note that it follows from the transition graph that each
Wi, i ≥ 2 must start with G and must be of length strictly greater than 1. Since any subword of length
greater than 5M must contain a block of the form B−B+WiB−, or a block of length at least 5 where there
is no occurrence of B−, the claim follows. �

Lemma 4.3. If 0 < α < 1
2 is badly approximable and β ∈ (0, 1) is badly approximable with respect to α,

then the pair (α0, β0) , related to (α, β) via equations (2.4) and (2.5), satis�es (α0, β0) ∈ X̃ and β0 is of
Ostrowski bounded type with respect to α0.

Proof. Let
∑∞
k=0 x

(k) be the Ostrowski expansion of β0 in terms of α0 given by Proposition 2.2. Then by

Remark 2.3
∑n
k=0 x

(k) ∈
{
T jα0

(0) : 0 ≤ j ≤ qn−1 + qn
}⋃
{α0} where qn are the denominators of the nth

convergent in the continued fraction expansion of α. Since under the conjugacy ψ (which was de�ned in (2.3))
between Tα0

and Rα (where both maps are viewed as rotations on a circle), the (equivalence class of the)
points 0 and α0 in the domain of Tα0

correspond respectively to the (equivalence class of) points 1− α and
1 in the domain of Rα, we obtain that ψ−1

(∑n
k=0 x

(k)
)
∈
{
Rjα (1− α) : 0 ≤ j ≤ qn−1 + qn − 1

}
. It follows

that the Ostrowski expansion of β0 is in�nite, since otherwise, if there exists an n such that β0 =
∑n
k=0 x

(k),
we would get that β = ψ−1 (β0) = 1 − α + jα mod 1 for some j ∈ N

⋃
{0}, which obviously contradicts

(1.1). Thus, (α0, β0) ∈ X̃.
Fix M ∈ N and let s = s (α0, β0) be de�ned by (4.1). We claim that, if for some n ∈ N, sn+i ∈ {B−, B+}

for all 1 ≤ i ≤M , then there exist a constant C, which does not depend on n, and 0 ≤ k ≤ qn+ qn−1, p ∈ Z,
such that

(4.5) |β − (k − 1)α− p| ≤ C

qn+M
.

The second assertion of the Lemma follows immediately from this and the fact that qn+M

qn
→ ∞ uniformly

in n as M tends to ∞.
To see that the claim holds, suppose that sn+i ∈ {B−, B+} for all 0 ≤ i ≤ M . Recalling the description

of the renormalization procedure in section 2.2, this is equivalent to x(n+i) = 0 for all 0 ≤ i ≤ M , so that∑
x(k) =

∑n+M
k=0 x(k). Thus, by the estimate of the reminder in an Ostrowski expansion given by Proposition

2.2, we obtain that ∣∣∣∣∣β0 −
n∑
k=0

x(k)

∣∣∣∣∣ =

∣∣∣∣∣β0 −
n+M∑
k=0

x(k)

∣∣∣∣∣ ≤ ∣∣∣β(n+M+1)
∣∣∣ ≤ α(n+M).

Since α is badly approximable, α(n) = Gn (α) ≤ C
qn

for all n, where C is a constant which depends only on

α. Since the conjugacy map ψ is a�ne, the previous inequality yields that there exists a constant C, such
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that ∣∣∣∣∣β − ψ−1
(

n∑
k=0

x(k)

)∣∣∣∣∣ ≤ C

qn+M
.

Since ψ−1
(∑n

k=0 x
(k)
)
∈
{
Rjα (1− α) : 0 ≤ j < qn−1 + qn

}
, we obtain that

ψ−1

(
n∑
k=0

x(k)

)
= 1− α+ kα+ p

where 0 ≤ k < qn + qn−1, and p ∈ Z. Thus, combining the last two equations, we proved (4.5). This
completes the proof of the Lemma. �

Let 0 < α < 1
2 be badly approximable, let β ∈ (0, 1) be badly approximable with respect to α and let

(α0, β0) be related to (α, β) via equations (2.4) and (2.5). Since by the previous proposition (α0, β0) ∈ X̃, the
sequence of transition matrices p(n) associated to the pair (α0, β0) given by De�nition 2.12 is well de�ned.
Recall that τ (P ) , where P is a stochastic matrix, denotes the contraction coe�cient de�ned by (3.3).

Corollary 4.4. Let 0 < α < 1
2 be badly approximable, β ∈ (0, 1) be badly approximable with respect to α

and let (α0, β0) be related to (α, β) via equations (2.4) and (2.5). Then if p(n) is the sequence of transition
matrices associated to (α0, β0) (see De�nition 2.12), there exist M ∈ N, and 0 ≤ δ < 1, such that

τ
(
p(n+M) · p(n+M−1) · ... · p(n)

)
< δ for all n ∈ N.

Proof. Lemma 4.3 implies that β0 is of Ostrowski bounded type. By de�nition of the transition matrices
p(n) (see De�nition 2.12), for any (K, k) ∈ Sn+M+1, (J, j) ∈ Sn(

p(n+M) · p(n+M−1) · ... · p(n)
)
(K,k),(J,j)

> 0

if and only if
(An+MAn+M−1...An)(τn+M (K))k,J

> 0.

This should be interpreted as the statement that the probability to pass from a state (K, k) ∈ SM+n+1 to

some state (J, j) ∈ Sn is positive if and only if, the intersection of the tower Z
(n)
J with the subtower of

Z
(n+M+1)
K labelled by (K, k) is non-empty. Thus, Proposition 4.2 implies that there exists M ∈ N such that

p(n+M) · ... · p(n) is strictly positive for any n ∈ N. From α being badly approximable (see inequality (2.24))
and by the fact that by de�nition, every positive entry of p(n+M) · ... · p(n) is a ratio between the heights

of tower at the (n+M)
th

and nth stage of the renormalization, it follows that there exists δ > 0 which is
indpendent of n, such that every entry of p(n+M) · ... · p(n) is not less than δ. Note that it follows from the
de�nition of the coe�cient τ (see (3.3)) that if Pn×m is a stochastic matrix such that there exists δ > 0, for
which Pi,j > δ, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, then τ (P ) < 1− δ. Thus, the proof is complete. �

4.2. Growth of the variance. In this section we consider the random variables ξk (Xk) , k ∈ N, constructed
in Section 2.6 (see equation (2.31) therein). Recall that the array is well de�ned for any given pair of

parameters (α0, β0) ∈ X̃ and, by the key Proposition 2.16, models Birkho� sums over the transformation
Tα0 of the function ϕ de�ned by (2.6), which has a jump at β0. The goal in the present section is to show
that if ϕ is not a coboundary, then the variance V arµn (

∑n
k=1 ξk (Xk)) tends to in�nity as n tends to in�nity,

where V arµn (
∑n
k=1 ξk (Xk)) is the variance of

∑n
k=1 ξk (Xk) with respect to the measure µn.

Let us �rst recall the de�nition of tightness and a criterion which characterizes coboundaries.

De�nition 4.5. Let (Ω,B, P ) be a probability space. A sequence of random variables {Yn} de�ned on Ω
and taking values in a Polish space P is tight if for every ε > 0, there exists a compact set C ⊆ P such that
∀n ∈ N, P (Yn ∈ C) > 1− ε.

Let (X,B,m, T ) be a probability preserving system and let f : X → R be a measurable function. We
say that f is a coboundary if there exists a measurable function g : X → R such that the equality f (x) =
g (x) − g ◦ T (x) holds almost surely. Let us recall the following characterization of coboundaries on R (see
[?]).
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Theorem 4.6. The sequence
{∑n−1

k=0 f ◦ T k
}
is tight if and only if f is a coboundary.

Set en = Eµn (
∑n
k=1Xk), σn =

√
V arµn (

∑n
k=1Xk). We will now prove the following lemma.

Lemma 4.7. Assume that there exists a strictly increasing sequence of positive integers {nj}∞j=1 such that

sup
{
σnj : j = 1, 2, ...

}
<∞.

Then the sequence ϕn =
∑n−1
k=0 ϕ ◦ T kα0

is tight.

Thus, combining Theorem 4.6 and Lemma 4.7 we have the following.

Corollary 4.8. If σn does not tend to in�nity as n→∞, then ϕ must be a coboundary.

Proof of Lemma 4.7. Fix ε > 0. By the Chebychev's inequality, the assumption that sup
{
σnj : j = 1, 2, ...

}
<

∞, implies that there exists a constant A such that for every j ∈ N,

(4.6) µnj

(∣∣∣∣∣
nj∑
k=1

ξk (Xk)− enj

∣∣∣∣∣ > A

)
< ε.

Let n ∈ N and �x j such that n < εh
(nj)
J for any J ∈ {L,M,S} (this is possible since the heights of

the towers h
(n)
J tend to in�nity with n). Let x be any point on level l of the tower Z

(nj)
J and consider

the Birkho� sums ϕn(x). Then there exists a point x0 = x0(x) in the base of the tower I
(nj)
J such that

ϕn (x) = ϕn+l (x0) − ϕl (x0). Since the values of Sl(x0) for x0 ∈ I
(nj)
J and 0 ≤ l ≤ h

(nj)
J do not depend

on x0, we can choose any point xJ ∈ I
(nj)
J and by the triangle inequality we have that |ϕn (x)| > 2A

implies that
∣∣ϕn+l (xJ)− enj

∣∣ > A or
∣∣ϕl (xJ)− enj

∣∣ > A for any point x on level l of the tower Z
(nj)
J with

0 ≤ l < h
(nj)
J − n. Thus,

λ

(
|ϕn(x)| >2A

∣∣∣∣ x ∈ Z(nj)
J

)
≤ λ

(
I
(nj)
J

)(
#
{

0 ≤ l < h
(nj)
J − n :

∣∣ϕn+l (xJ)− enj
∣∣ > A or

∣∣ϕl (xJ)− enj
∣∣ > A

}
+ n

)
≤ 1

h
(nj)
J

#
{

0 ≤ l < h
(nj)
J − n :

∣∣ϕn+l (xJ)− enj
∣∣ > A or

∣∣ϕl (xJ)− enj
∣∣ > A

}
+ ε.

where the last inequality follows by using that λ
(
I
(nj)
J

)
h
(nj)
J = λ

(
Z

(nj)
J

)
≤ 1 and recalling that by choice

of nj we have that n/h
(nj)
J < ε. Furthermore, by a change of indices,

1

h
(nj)
J

#

{
0 ≤ l < h

(nj)
J − n :

∣∣ϕl (xJ)− enj
∣∣ > A or

∣∣ϕn+l (xJ)− enj
∣∣ > A

}

≤ 2

h
(nj)
J

#
{

0 ≤ l < h
(nj)
J :

∣∣ϕl (xJ)− enj
∣∣ > A

}
= 2µJnj

(∣∣∣∣∣
nj∑
k=1

ξk (Xk)− enj

∣∣∣∣∣ > A

)
,
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where the last equality follows from Proposition 2.16. Therefore, from the relation between the measures µJn
and µn (see De�nition 2.12) it follows that

λ (|ϕn| > 2A) =
∑

J∈{L,M,S}

λ
(
|ϕn| > 2A

∣∣∣Z(nj)
J

)
· λ
(
Z

(nj)
J

)

≤ 3ε+
∑

J∈{L,M,S}

2µJnj

(∣∣∣∣∣
nj∑
k=1

ξk (Xk)− enj

∣∣∣∣∣ > A

)
λ
(
Z

(nj)
J

)

= 3ε+ 2µnj

(∣∣∣∣∣
nj∑
k=1

ξk (Xk)− enj

∣∣∣∣∣ > A

)
.

It follows from (4.6) that λ ({x : |ϕn (x)| > 2A}) < 5ε. Since ε was chosen arbitrarily, this shows that ϕn is
tight. �

4.3. Proof of Theorem 1.1. We begin this section with a few observations that summarize the results
obtained in the preceding sections in the form that is used in order to prove Theorem 4.9 below from which
the main theorem follows.

Let 0 < α < 1
2 be badly approximable and β ∈ (0, 1) be badly approximable with respect to α. By Lemma

4.3 the pair (α0, β0) related to (α, β) via equations (2.4) and (2.5), satis�es (α0, β0) ∈ X̃. To each such pair,
in Section 2.5 we associated a Markov compactum given by a sequence of transition matrices {An} (which
are incidence matrices for the substitutions {τn} which describe the Rokhlin tower structure) and Markov
measures {µn} with transition matrices

{
p(n)

}
(de�ned in 2.27 and De�nition 2.12 respectively). Let{Xk}

be the coordinate functions on the Markov compactum (see 2.31) and {ξk} be the functions also de�ned
therein (see De�nition 2.15), which can be used to study the behavior of Birkho� sums of the function ϕ
de�ned by (2.6) over Tα0 in virtue of as proved in Proposition 2.16. We set

en := Eµn

(
n∑
k=1

ξk (Xk)

)
, σn :=

√√√√V arµn

(
n∑
k=1

ξk (Xk)

)
,

where the subscript µn in Eµn and V arµn mean that all integrals are taken with respect to the measure µn.
Since the function ϕ de�ned by (2.6) is not a coboundary (see Remark 2.4), Corollary 4.8 implies that

σn → ∞. By de�nition of ξk, combining the assumption that α is badly approximable with the inequality
(2.25), we obtain that

sup
{
ξk (J, j) : k ∈ N, (J, j) ∈ Sk

}
<∞.

Finally, for any n ∈ N, set ξ(n)k := ξk, X
(n)
k := Xn, for k = n, ..., 1. Let us then de�ne a Markov array{

X
(n)
k : n ∈ N, k = n, ..., 1

}
, where Prob

((
X

(n)
1 , ..., X

(n)
n

)
∈ A

)
= µn (A) for every set A in the Borel σ-

algebra of the space Σn. The observations above together with Corollary 4.4 show that all assumptions of
Corollary 3.3 hold for this array. Thus

(4.7) lim
n→∞

µn

{∑N
k=1 ξk (Xk)− eN

σN
∈ [a, b]

}
=

1√
2π

∫ b

a

e−
x2

2 dx.

Moreover, by Proposition 3.4 (and the fact the σn → ∞), (4.7) holds with µn replaced by µJn, for any
J ∈ {L,M,S} (where µJn are the conditional measures de�ned by (2.28)).

We can now deduce the temporal CLT for Birkho� sums. Fix x ∈ [−1, α0). Let us �rst de�ne the centraliz-

ing and normalizing constants for the Birkho� sums ϕn(x). For n ∈ N, let N = N (n) := min
{
k : n ≤ h(k)S

}
.

Let Z
(N)
J be the tower at stage N of the renormalization which contains the point x and let ln be the level

of the tower Z
(N)
J which contains x, i.e. ln satis�es x ∈ T ln

(
I
(N)
J

)
. Set cn (x) := ϕln (x′) where x′ is any

point in I
(N)
J , i.e. cn (x) is the Birkho� sum over the tower Z

(N)
J from the bottom of the tower and up to

the level that contains x.
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We will prove the following temporal DLT, from which Theorem 1.1 follows immediately recalling the
correspondence between Rα and Tα0

and the functions fβ and ϕ (refer to the beginning of Section (2.2)).

Theorem 4.9. For any a < b,

lim
n→∞

1

n
#

{
0 ≤ k ≤ n− 1 :

ϕk (x)− cn (x)− eN(n)

σN(n)
∈ [a, b]

}
=

1√
2π

∫ b

a

e−
x2

2 dx.

The above formulation, in particular, shows that the centralizing constants depend on the point x and
have a very clear dynamical meaning. The proof of this Theorem, which will take the rest of the section, is
based on a quite standard decomposition of a Birkho� sums into special Birkho� sums. For each intermediate
Birkho� sum along a tower, we then exploit the connection with the Markov chain given by Proposition 2.16
and the convergence given by (4.7).

Proof. Fix 0 < ε < 1, a, b ∈ R, a < b and let n ∈ N. By de�nition of N = N (n), the points
{
x, ..., Tn−1x

}
are contained in at most two towers obtained at the N th level of the renormalization. Let K be de�ned by

K := K (n) = max
{
k : h

(k)
L ≤ εn

}
. Evidently, K ≤ N , and by (2.23) there exists C > 0 which depends on

ε but not on n, such that N −K ≤ C.
Thus, since towers of levelN are decomposed into towers of levelK, we can decompose the orbit

{
x, ..., Tn−1x

}
into blocks which are each contained in a tower of level K. More precisely, as shown in Figure (4.1), there

exist 0 = k0 ≤ k1 < ..., < kt ≤ n and towers
(
Z

(K)
Jki

)t
i=0

appearing at the Kth stage of renormalization, such

that
{
T kix, ..., T ki+1−1x

}
⊆ Z

(K)
Jki

for i = 0, ..., t. Moreover, for i = 1, ..., t − 1, the set
{
T kix, ..., T ki+1−1x

}
contains exactly h

(K)
Jki

points, i.e. ki+1 − ki = h
(K)
Jki

and the points T ki+j , j = 0, ..., ki+1 − 1 belong to the

j + 1 level of the tower Z
(K)
Jki

. Since the orbit segment is contained in at most two towers of level N and

each tower of level N contains at most h
(N)
L /h

(K)
S towers of level K, we have that t = t (n) ≤ 2h

(N)
L /h

(K)
S

and hence is uniformly bounded in n.
It follows from this decomposition that, for any interval I ⊂ R,

1

n
# {0 ≤ k ≤ n− 1 : ϕk (x) ∈ I} =

1

n

t−1∑
i=0

# {ki ≤ k < ki+1 : ϕk (x) ∈ I}(4.8)

≤ 1

n

t−1∑
i=1

# {ki ≤ k < ki+1 : ϕk (x) ∈ I}+ 2ε,

where the last inequality follows from the fact that h
(K)
Jk0

and h
(K)
Jkt

are both not greater than nε. Evidently,

we also have the opposite inequality

(4.9)
1

n
# {0 ≤ k ≤ n− 1 : ϕk (x) ∈ I} ≥ 1

n

t−1∑
i=1

# {ki ≤ k < ki+1 : ϕk (x) ∈ I} .

For i = 1, ..., t− 1, and ki < k ≤ ki+1, write

ϕk (x) = ϕk (x)− ϕki (x) + ϕki (x) = ϕk−ki (x′) + ϕki (x)

where x′ is any point in I
(K)
Jki

.

By de�nition of cn (x), ϕki (x) + cn (x) = ϕki (x0) where x0 belongs to the base I
(N) (see Figure 4.1), thus

ϕki (x) + cn (x) is a sum of special Birkho� sums over subtowers of Z
(K)
J , J ∈ {L,M,S}. Hence,

|ϕki (x) + cn (x)| ≤
(
h
(N)
L /h

(K)
S

)
sup
J

∣∣∣ϕ(K)
J

∣∣∣ ,
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Figure 4.1. Decomposition of the orbit segment
{
x, ..., Tn−1x

}
into Birkho� sums along

towers of level N −K.

by (2.25), there exists a constant C̃ := C̃ (ε) which does not depend on n, such that |ϕki (x) + cn (x)| ≤ C̃.
It follows from Proposition 2.16 that

#
{
ki ≤ k < ki+1 : ϕk(x)−eN−cn(x)

σN
∈ [a, b]

}
h
(K)
Jki

=

#

{
0 ≤ k < h

(K)
Jki

:
ϕk(x′)−ϕki (x)−eN−cn(x)

σN
∈ [a, b]

}
h
(K)
Jki

= µ
Jki
K

(∑K
k=1 ξk (Xk)− ϕki (x)− eN − cn (x)

σN
∈ [a, b]

)
.

Since |N −K| = |N (n)−K (n)| < C, we have that supn {|eN − eK |} <∞ and σN
σK
−→
n→∞

1. Moreover, since

|ϕki (x) + cn (x)| ≤ C̃, it follows from (4.7), that for any J ∈ {L,M,S}

lim
n→∞

1

h
(K)
J

#

{
ki ≤ k < ki+1 :

ϕk (x)− eN − cn (x)

σN
∈ [a, b]

}
=

1√
2π

∫ b

a

e−
x2

2 dx.

Let n0 be such that for all n > n0 and any J ∈ {L,M,S},

(4.10)

∣∣∣∣∣ 1

h
(K)
J

#

{
0 ≤ k < h

(k)
J − 1 :

ϕk (x)− eN − cn (x)

σN
∈ [a, b]

}
− 1√

2π

∫ b

a

e−
x2

2 dx

∣∣∣∣∣ < ε.

Then if n > n0, by (4.8) and (4.10), recalling that
∑t−1
i=1 hJki ≤ n,

∣∣∣ 1
n

#
{

0 ≤ k ≤ n− 1 :
ϕk (x)− eN − cn (x)

σN
∈ [a, b]

∣∣∣}
≤ 1

n

t−1∑
i=1

#

{
ki ≤ k < ki+1 :

ϕk (x)− eN − cn (x)

σN
∈ [a, b]

}
+ 2ε

≤ 1

n

t−1∑
i=1

hJki

(
1√
2π

∫ b

a

e−
x2

2 dx· 1
n

t−1∑
i=1

hJki+ε

)
+2ε

≤ 1√
2π

∫ b

a

e−
x2

2 dx+ 3ε.
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Similarly, by (4.9), if n > n0, using this time that
∑t−1
i=1 hJki ≥ n(1− 2ε), we obtain the lower bound∣∣∣ 1

n
#
{

0 ≤ k ≤ n− 1 :
ϕk (x)− eN − cn (x)

σN
∈ [a, b]

∣∣∣}
≥ 1

n

t−1∑
i=1

#

{
ki ≤ k < ki+1 :

ϕk (x)− eN − cn (x)

σN
∈ [a, b]

}

≥ 1

n

t−1∑
i=1

hJki

(
1√
2π

∫ b

a

e−
x2

2 dx− ε

)

≥ (1− 2ε)

(
1√
2π

∫ b

a

e−
x2

2 dx− ε

)
.

This completes the proof. �
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