1,009 research outputs found

    Structure learning of antiferromagnetic Ising models

    Full text link
    In this paper we investigate the computational complexity of learning the graph structure underlying a discrete undirected graphical model from i.i.d. samples. We first observe that the notoriously difficult problem of learning parities with noise can be captured as a special case of learning graphical models. This leads to an unconditional computational lower bound of Ω(pd/2)\Omega (p^{d/2}) for learning general graphical models on pp nodes of maximum degree dd, for the class of so-called statistical algorithms recently introduced by Feldman et al (2013). The lower bound suggests that the O(pd)O(p^d) runtime required to exhaustively search over neighborhoods cannot be significantly improved without restricting the class of models. Aside from structural assumptions on the graph such as it being a tree, hypertree, tree-like, etc., many recent papers on structure learning assume that the model has the correlation decay property. Indeed, focusing on ferromagnetic Ising models, Bento and Montanari (2009) showed that all known low-complexity algorithms fail to learn simple graphs when the interaction strength exceeds a number related to the correlation decay threshold. Our second set of results gives a class of repelling (antiferromagnetic) models that have the opposite behavior: very strong interaction allows efficient learning in time O(p2)O(p^2). We provide an algorithm whose performance interpolates between O(p2)O(p^2) and O(pd+2)O(p^{d+2}) depending on the strength of the repulsion.Comment: 15 pages. NIPS 201

    Deep neural networks for direct, featureless learning through observation: the case of 2d spin models

    Full text link
    We demonstrate the capability of a convolutional deep neural network in predicting the nearest-neighbor energy of the 4x4 Ising model. Using its success at this task, we motivate the study of the larger 8x8 Ising model, showing that the deep neural network can learn the nearest-neighbor Ising Hamiltonian after only seeing a vanishingly small fraction of configuration space. Additionally, we show that the neural network has learned both the energy and magnetization operators with sufficient accuracy to replicate the low-temperature Ising phase transition. We then demonstrate the ability of the neural network to learn other spin models, teaching the convolutional deep neural network to accurately predict the long-range interaction of a screened Coulomb Hamiltonian, a sinusoidally attenuated screened Coulomb Hamiltonian, and a modified Potts model Hamiltonian. In the case of the long-range interaction, we demonstrate the ability of the neural network to recover the phase transition with equivalent accuracy to the numerically exact method. Furthermore, in the case of the long-range interaction, the benefits of the neural network become apparent; it is able to make predictions with a high degree of accuracy, and do so 1600 times faster than a CUDA-optimized exact calculation. Additionally, we demonstrate how the neural network succeeds at these tasks by looking at the weights learned in a simplified demonstration

    Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons

    Full text link
    The spontaneous generation of charge-density-wave order in a Dirac fermion system via the natural mechanism of electron-phonon coupling is studied in the framework of the Holstein model on the honeycomb lattice. Using two independent and unbiased quantum Monte Carlo methods, the phase diagram as a function of temperature and coupling strength is determined. It features a quantum critical point as well as a line of thermal critical points. Finite-size scaling appears consistent with fermionic Gross-Neveu-Ising universality for the quantum phase transition, and bosonic Ising universality for the thermal phase transition. The critical temperature has a maximum at intermediate couplings. Our findings motivate experimental efforts to identify or engineer Dirac systems with sufficiently strong and tunable electron-phonon coupling.Comment: 4+3 pages, 4+2 figure
    • …
    corecore