3,021 research outputs found

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Simple Wriggling is Hard unless You Are a Fat Hippo

    Full text link
    We prove that it is NP-hard to decide whether two points in a polygonal domain with holes can be connected by a wire. This implies that finding any approximation to the shortest path for a long snake amidst polygonal obstacles is NP-hard. On the positive side, we show that snake's problem is "length-tractable": if the snake is "fat", i.e., its length/width ratio is small, the shortest path can be computed in polynomial time.Comment: A shorter version is to be presented at FUN 201

    Liftings and stresses for planar periodic frameworks

    Get PDF
    We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.Comment: An extended abstract of this paper has appeared in Proc. 30th annual Symposium on Computational Geometry (SOCG'14), Kyoto, Japan, June 201

    Travel time stability in weakly range-dependent sound channels

    Full text link
    Travel time stability is investigated in environments consisting of a range-independent background sound-speed profile on which a highly structured range-dependent perturbation is superimposed. The stability of both unconstrained and constrained (eigenray) travel times are considered. Both general theoretical arguments and analytical estimates of time spreads suggest that travel time stability is largely controlled by a property ω′\omega ^{\prime} of the background sound speed profile. Here, 2π/ω(I)2\pi/\omega (I) is the range of a ray double loop and II is the ray action variable. Numerical results for both volume scattering by internal waves in deep ocean environments and rough surface scattering in upward refracting environments are shown to confirm the expectation that travel time stability is largely controlled by ω′\omega ^{\prime}.Comment: Submitted to J. Acoust. Soc. Am., 30 June 200

    Holographic Holes and Differential Entropy

    Full text link
    Recently, it has been shown by Balasubramanian et al. and Myers et al. that the Bekenstein-Hawking entropy formula evaluated on certain closed surfaces in the bulk of a holographic spacetime has an interpretation as the differential entropy of a particular family of intervals (or strips) in the boundary theory. We first extend this construction to bulk surfaces which vary in time. We then give a general proof of the equality between the gravitational entropy and the differential entropy. This proof applies to a broad class of holographic backgrounds possessing a generalized planar symmetry and to certain classes of higher-curvature theories of gravity. To apply this theorem, one can begin with a bulk surface and determine the appropriate family of boundary intervals by considering extremal surfaces tangent to the given surface in the bulk. Alternatively, one can begin with a family of boundary intervals; as we show, the differential entropy then equals the gravitational entropy of a bulk surface that emerges from the intersection of the neighboring entanglement wedges, in a continuum limit.Comment: 62 pages; v2: minor improvements to presentation, references adde

    Goal Set Inverse Optimal Control and Iterative Re-planning for Predicting Human Reaching Motions in Shared Workspaces

    Full text link
    To enable safe and efficient human-robot collaboration in shared workspaces it is important for the robot to predict how a human will move when performing a task. While predicting human motion for tasks not known a priori is very challenging, we argue that single-arm reaching motions for known tasks in collaborative settings (which are especially relevant for manufacturing) are indeed predictable. Two hypotheses underlie our approach for predicting such motions: First, that the trajectory the human performs is optimal with respect to an unknown cost function, and second, that human adaptation to their partner's motion can be captured well through iterative re-planning with the above cost function. The key to our approach is thus to learn a cost function which "explains" the motion of the human. To do this, we gather example trajectories from pairs of participants performing a collaborative assembly task using motion capture. We then use Inverse Optimal Control to learn a cost function from these trajectories. Finally, we predict reaching motions from the human's current configuration to a task-space goal region by iteratively re-planning a trajectory using the learned cost function. Our planning algorithm is based on the trajectory optimizer STOMP, it plans for a 23 DoF human kinematic model and accounts for the presence of a moving collaborator and obstacles in the environment. Our results suggest that in most cases, our method outperforms baseline methods when predicting motions. We also show that our method outperforms baselines for predicting human motion when a human and a robot share the workspace.Comment: 12 pages, Accepted for publication IEEE Transaction on Robotics 201
    • …
    corecore