6 research outputs found

    Structure Inference for Bayesian Multisensory Perception and Tracking

    Get PDF
    We investigate a solution to the problem of multisensor perception and tracking by formulating it in the framework of Bayesian model selection. Humans robustly associate multi-sensory data as appropriate, but previous theoretical work has focused largely on purely integrative cases, leaving segregation unaccounted for and unexploited by machine perception systems. We illustrate a unifying, Bayesian solution to multi-sensor perception and tracking which accounts for both integration and segregation by explicit probabilistic reasoning about data association in a temporal context. Unsupervised learning of such a model with EM is illustrated for a real world audio-visual application

    Structure Inference for Bayesian Multisensory Perception and Tracking

    Get PDF
    We investigate a solution to the problem of multisensor perception and tracking by formulating it in the framework of Bayesian model selection. Humans robustly associate multi-sensory data as appropriate, but previous theoretical work has focused largely on purely integrative cases, leaving segregation unaccounted for and unexploited by machine perception systems. We illustrate a unifying, Bayesian solution to multi-sensor perception and tracking which accounts for both integration and segregation by explicit probabilistic reasoning about data association in a temporal context. Unsupervised learning of such a model with EM is illustrated for a real world audio-visual application.

    Multisensory Oddity Detection as Bayesian Inference

    Get PDF
    A key goal for the perceptual system is to optimally combine information from all the senses that may be available in order to develop the most accurate and unified picture possible of the outside world. The contemporary theoretical framework of ideal observer maximum likelihood integration (MLI) has been highly successful in modelling how the human brain combines information from a variety of different sensory modalities. However, in various recent experiments involving multisensory stimuli of uncertain correspondence, MLI breaks down as a successful model of sensory combination. Within the paradigm of direct stimulus estimation, perceptual models which use Bayesian inference to resolve correspondence have recently been shown to generalize successfully to these cases where MLI fails. This approach has been known variously as model inference, causal inference or structure inference. In this paper, we examine causal uncertainty in another important class of multi-sensory perception paradigm – that of oddity detection and demonstrate how a Bayesian ideal observer also treats oddity detection as a structure inference problem. We validate this approach by showing that it provides an intuitive and quantitative explanation of an important pair of multi-sensory oddity detection experiments – involving cues across and within modalities – for which MLI previously failed dramatically, allowing a novel unifying treatment of within and cross modal multisensory perception. Our successful application of structure inference models to the new ‘oddity detection’ paradigm, and the resultant unified explanation of across and within modality cases provide further evidence to suggest that structure inference may be a commonly evolved principle for combining perceptual information in the brain

    Detection and localization of 3d audio-visual objects using unsupervised clustering

    Full text link

    Detection and Localization of 3D Audio-Visual Objects Using Unsupervised Clustering

    Get PDF
    International audienceThis paper addresses the issues of detecting and localizing objects in a scene that are both seen and heard. We explain the benefits of a human-like configuration of sensors (binaural and binocular) for gathering auditory and visual observations. It is shown that the detection and localization problem can be recast as the task of clustering the audio-visual observations into coherent groups. We propose a probabilistic generative model that captures the relations between audio and visual observations. This model maps the data into a common audio-visual 3D representation via a pair of mixture models. Inference is performed by a version of the expectationmaximization algorithm, which is formally derived, and which provides cooperative estimates of both the auditory activity and the 3D position of each object. We describe several experiments with single- and multiple-speaker detection and localization, in the presence of other audio sources

    Bayesian Multisensory Perception

    Get PDF
    Institute of Perception, Action and BehaviourA key goal for humans and artificial intelligence systems is to develop an accurate and unified picture of the outside world based on the data from any sense(s) that may be available. The availability of multiple senses presents the perceptual system with new opportunities to fulfil this goal, but exploiting these opportunities first requires the solution of two related tasks. The first is how to make the best use of any redundant information from the sensors to produce the most accurate percept of the state of the world. The second is how to interpret the relationship between observations in each modality; for example, the correspondence problem of whether or not they originate from the same source. This thesis investigates these questions using ideal Bayesian observers as the underlying theoretical approach. In particular, the latter correspondence task is treated as a problem of Bayesian model selection or structure inference in Bayesian networks. This approach provides a unified and principled way of representing and understanding the perceptual problems faced by humans and machines and their commonality. In the domain of machine intelligence, we exploit the developed theory for practical benefit, developing a model to represent audio-visual correlations. Unsupervised learning in this model provides automatic calibration and user appearance learning, without human intervention. Inference in the model involves explicit reasoning about the association between latent sources and observations. This provides audio-visual tracking through occlusion with improved accuracy compared to standard techniques. It also provides detection, verification and speech segmentation, ultimately allowing the machine to understand ``who said what, where?'' in multi-party conversations. In the domain of human neuroscience, we show how a variety of recent results in multimodal perception can be understood as the consequence of probabilistic reasoning about the causal structure of multimodal observations. We show this for a localisation task in audio-visual psychophysics, which is very similar to the task solved by our machine learning system. We also use the same theory to understand results from experiments in the completely different paradigm of oddity detection using visual and haptic modalities. These results begin to suggest that the human perceptual system performs -- or at least approximates -- sophisticated probabilistic reasoning about the causal structure of observations under the hood
    corecore