3,652 research outputs found

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    Structural graph matching using the EM algorithm and singular value decomposition

    Get PDF
    This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method

    CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information

    Full text link
    Open Information Extraction (OpenIE) methods extract (noun phrase, relation phrase, noun phrase) triples from text, resulting in the construction of large Open Knowledge Bases (Open KBs). The noun phrases (NPs) and relation phrases in such Open KBs are not canonicalized, leading to the storage of redundant and ambiguous facts. Recent research has posed canonicalization of Open KBs as clustering over manuallydefined feature spaces. Manual feature engineering is expensive and often sub-optimal. In order to overcome this challenge, we propose Canonicalization using Embeddings and Side Information (CESI) - a novel approach which performs canonicalization over learned embeddings of Open KBs. CESI extends recent advances in KB embedding by incorporating relevant NP and relation phrase side information in a principled manner. Through extensive experiments on multiple real-world datasets, we demonstrate CESI's effectiveness.Comment: Accepted at WWW 201

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Mining Brain Networks using Multiple Side Views for Neurological Disorder Identification

    Full text link
    Mining discriminative subgraph patterns from graph data has attracted great interest in recent years. It has a wide variety of applications in disease diagnosis, neuroimaging, etc. Most research on subgraph mining focuses on the graph representation alone. However, in many real-world applications, the side information is available along with the graph data. For example, for neurological disorder identification, in addition to the brain networks derived from neuroimaging data, hundreds of clinical, immunologic, serologic and cognitive measures may also be documented for each subject. These measures compose multiple side views encoding a tremendous amount of supplemental information for diagnostic purposes, yet are often ignored. In this paper, we study the problem of discriminative subgraph selection using multiple side views and propose a novel solution to find an optimal set of subgraph features for graph classification by exploring a plurality of side views. We derive a feature evaluation criterion, named gSide, to estimate the usefulness of subgraph patterns based upon side views. Then we develop a branch-and-bound algorithm, called gMSV, to efficiently search for optimal subgraph features by integrating the subgraph mining process and the procedure of discriminative feature selection. Empirical studies on graph classification tasks for neurological disorders using brain networks demonstrate that subgraph patterns selected by the multi-side-view guided subgraph selection approach can effectively boost graph classification performances and are relevant to disease diagnosis.Comment: in Proceedings of IEEE International Conference on Data Mining (ICDM) 201

    Numeric Input Relations for Relational Learning with Applications to Community Structure Analysis

    Full text link
    Most work in the area of statistical relational learning (SRL) is focussed on discrete data, even though a few approaches for hybrid SRL models have been proposed that combine numerical and discrete variables. In this paper we distinguish numerical random variables for which a probability distribution is defined by the model from numerical input variables that are only used for conditioning the distribution of discrete response variables. We show how numerical input relations can very easily be used in the Relational Bayesian Network framework, and that existing inference and learning methods need only minor adjustments to be applied in this generalized setting. The resulting framework provides natural relational extensions of classical probabilistic models for categorical data. We demonstrate the usefulness of RBN models with numeric input relations by several examples. In particular, we use the augmented RBN framework to define probabilistic models for multi-relational (social) networks in which the probability of a link between two nodes depends on numeric latent feature vectors associated with the nodes. A generic learning procedure can be used to obtain a maximum-likelihood fit of model parameters and latent feature values for a variety of models that can be expressed in the high-level RBN representation. Specifically, we propose a model that allows us to interpret learned latent feature values as community centrality degrees by which we can identify nodes that are central for one community, that are hubs between communities, or that are isolated nodes. In a multi-relational setting, the model also provides a characterization of how different relations are associated with each community
    corecore