4 research outputs found

    A calculus for higher-order concurrent constraint programming with deep guards

    Get PDF
    We present a calculus providing an abstract operational semantics forhigher-order concurrent constraint programming. The calculus isparameterized with a first-order constraint system and provides first-class abstraction, guarded disjunction, committed-choice, deepguards, dynamic creation of unique names, and constraint communication.The calculus comes with a declarative sublanguage for which computation amounts to equivalence transformation of formulas. The declarative sublanguage can express negation. Abstractions are referred to by names, which are first-class values. This way we obtain a smooth and straight forward combination of first-order constraints with higher-order programming. Constraint communication is asynchronous and exploits the presence of logic variables. It provides a notion of state that is fully compatible with constraints and concurrency. The calculus serves as the semantic basis of Oz, a programming language and system under development at DFKI

    Programming constraint services

    Get PDF
    This thesis presents design, application, implementation, and evaluation of computation spaces as abstractions for programming constraint services at a high level. Spaces are seamlessly integrated into a concurrent programming language and make constraintbased computations compatible with concurrency through encapsulation. Spaces are applied to search and combinators as essential constraint services. State-of-the-art and new search engines such as visual interactive search and parallel search are covered. Search is expressive and concurrency-compatible by using copying rather than trailing. Search is space and time efficient by using recomputation. Composable combinators, also known as deep-guard combinators, stress the control facilities and concurrency integration of spaces. The implementation of spaces comes as an orthogonal extension to the implementation of the underlying programming language. The resulting implementation is shown to be competitive with existing constraint programming systems.Diese Dissertation beschreibt Entwurf, Verwendung, Implementierung und Evaluierung von Computation Spaces für die Programmierung von Constraintdiensten. Spaces werden in eine nebenläufige Programmiersprache integriert. Sie fungieren als Kapseln für Berechnungen mit Constraints. Dadurch wird die Kompatibilität zu nebenläufigen Berechnungen gewährleistet. Suche und Kombinatoren sind zentrale Constraintdienste, die mit Spaces programmiert werden. Es werden sowohl übliche, als auch vollkommen neue Suchmaschinen, wie zum Beispiel interaktive Suche und parallele Suche, vorgestellt. Durch Kopieren wird Suche ausdrucksstark und kompatibel mit Nebenläufigkeit. Durch Wiederberechnung wird Suche effizient hinsichtlich Speicherbedarf und Laufzeit. Kombinatoren, die ineinander geschachtelt werden können (so genannte deep-guard Kombinatoren), verdeutlichen die Kontrollmöglichkeiten von Spaces. Die Implementierung von Spaces erfolgt als orthogonale Erweiterung einer Implementierung für die zugrundeliegende Programmiersprache. Das Ergebnis ist konkurrenzfähig zu existierenden Constraintprogrammiersystemen

    Structural Operational Semantics for AKL

    No full text
    The Andorra Kernel Language (AKL) is a concurrent constraint programming language. It can be seen as a general combination of logic programming languages such as Prolog, GHC, and Parlog, the first of which provides don't know nondeterminism, and the last two of which are concurrent logic programming languages. The constraint system is an independent parameter of the language description. In this paper, we revisit the description of Janson and Haridi [10], adding the formal machinery which is necessary in order to completely formalize the control of the computation model. To this we add a formal description of the transformational semantics of AKL. The semantics is a set of or-trees which also captures infinite computations. 1 Introduction The Andorra Kernel Language (AKL) is a general combination of search-oriented don't know nondeterministic logic programming languages, such as Prolog, and process-oriented concurrent logic programming languages, such as GHC, Parlog, and others [18, 6..
    corecore