2 research outputs found

    Demand Forecasting Considering Actual Peak Load Periods Using Artificial Neural Network

    Get PDF
    Presently, electrical energy consumption continues to increase from year to year. Therefore, a short-term load forecasting is required that electricity providers can deliver continuous electrical energy to electricity consumers. By considering the estimation of the electrical load, the scheduling plan for operation and allocation of reserves can be managed well by the supply side. This study is focused on a forecasting of electrical loads using Artificial Neural Network (ANN) method considering a backpropagation algorithm model. The advantage of this method is to forecast the electrical load in accordance with patterns of past loads that have been taught. The data used for the learning is Actual Peak Load Period (APLP) data on the 150 kV system during 2017. Results show that the best network architecture is structured for the APLP Day and Night. Moreover, the momentum setting and understanding rate are 0.85 and 0.1 for the APLP Day. In contrast, 0.9 and 0.15 belong to the APLP Night. Based on the best network architecture, the APLP day testing process generates Mean Squared Error (MSE) around 0.04 and Mean Absolute Percentage Error (MAPE) around 4.66%, while the APLP Night generates MSE in 0.16 and MAPE in 16.83%

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore