4,476 research outputs found

    Big networks : a survey

    Get PDF
    A network is a typical expressive form of representing complex systems in terms of vertices and links, in which the pattern of interactions amongst components of the network is intricate. The network can be static that does not change over time or dynamic that evolves through time. The complication of network analysis is different under the new circumstance of network size explosive increasing. In this paper, we introduce a new network science concept called a big network. A big networks is generally in large-scale with a complicated and higher-order inner structure. This paper proposes a guideline framework that gives an insight into the major topics in the area of network science from the viewpoint of a big network. We first introduce the structural characteristics of big networks from three levels, which are micro-level, meso-level, and macro-level. We then discuss some state-of-the-art advanced topics of big network analysis. Big network models and related approaches, including ranking methods, partition approaches, as well as network embedding algorithms are systematically introduced. Some typical applications in big networks are then reviewed, such as community detection, link prediction, recommendation, etc. Moreover, we also pinpoint some critical open issues that need to be investigated further. © 2020 Elsevier Inc

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    Learning Collective Behavior in Multi-relational Networks

    Get PDF
    With the rapid expansion of the Internet and WWW, the problem of analyzing social media data has received an increasing amount of attention in the past decade. The boom in social media platforms offers many possibilities to study human collective behavior and interactions on an unprecedented scale. In the past, much work has been done on the problem of learning from networked data with homogeneous topologies, where instances are explicitly or implicitly inter-connected by a single type of relationship. In contrast to traditional content-only classification methods, relational learning succeeds in improving classification performance by leveraging the correlation of the labels between linked instances. However, networked data extracted from social media, web pages, and bibliographic databases can contain entities of multiple classes and linked by various causal reasons, hence treating all links in a homogeneous way can limit the performance of relational classifiers. Learning the collective behavior and interactions in heterogeneous networks becomes much more complex. The contribution of this dissertation include 1) two classification frameworks for identifying human collective behavior in multi-relational social networks; 2) unsupervised and supervised learning models for relationship prediction in multi-relational collaborative networks. Our methods improve the performance of homogeneous predictive models by differentiating heterogeneous relations and capturing the prominent interaction patterns underlying the network structure. The work has been evaluated in various real-world social networks. We believe that this study will be useful for analyzing human collective behavior and interactions specifically in the scenario when the heterogeneous relationships in the network arise from various causal reasons

    Bayesian stochastic blockmodeling

    Full text link
    This chapter provides a self-contained introduction to the use of Bayesian inference to extract large-scale modular structures from network data, based on the stochastic blockmodel (SBM), as well as its degree-corrected and overlapping generalizations. We focus on nonparametric formulations that allow their inference in a manner that prevents overfitting, and enables model selection. We discuss aspects of the choice of priors, in particular how to avoid underfitting via increased Bayesian hierarchies, and we contrast the task of sampling network partitions from the posterior distribution with finding the single point estimate that maximizes it, while describing efficient algorithms to perform either one. We also show how inferring the SBM can be used to predict missing and spurious links, and shed light on the fundamental limitations of the detectability of modular structures in networks.Comment: 44 pages, 16 figures. Code is freely available as part of graph-tool at https://graph-tool.skewed.de . See also the HOWTO at https://graph-tool.skewed.de/static/doc/demos/inference/inference.htm

    Adaptive sampling in autonomous marine sensor networks

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2006In this thesis, an innovative architecture for real-time adaptive and cooperative control of autonomous sensor platforms in a marine sensor network is described in the context of the autonomous oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new approach to behavior-based control of autonomous vehicles using multiple objective functions that allows reactive control in complex environments with multiple constraints, and an approach to cooperative robotics that is a hybrid between the swarm cooperation and intentional cooperation approaches. The mobility of the sensor platforms is a key advantage of this strategy, allowing dynamic optimization of the sensor locations with respect to the classification or localization of a process of interest including processes which can be time varying, not spatially isotropic and for which action is required in real-time. Experimental results are presented for a 2-D target tracking application in which fully autonomous surface craft using simulated bearing sensors acquire and track a moving target in open water. In the first example, a single sensor vehicle adaptively tracks a target while simultaneously relaying the estimated track to a second vehicle acting as a classification platform. In the second example, two spatially distributed sensor vehicles adaptively track a moving target by fusing their sensor information to form a single target track estimate. In both cases the goal is to adapt the platform motion to minimize the uncertainty of the target track parameter estimates. The link between the sensor platform motion and the target track estimate uncertainty is fully derived and this information is used to develop the behaviors for the sensor platform control system. The experimental results clearly illustrate the significant processing gain that spatially distributed sensors can achieve over a single sensor when observing a dynamic phenomenon as well as the viability of behavior-based control for dealing with uncertainty in complex situations in marine sensor networks.Supported by the Office of Naval Research, with a 3-year National Defense Science and Engineering Grant Fellowship and research assistantships through the Generic Ocean Array Technology Sonar (GOATS) project, contract N00014-97-1-0202 and contract N00014-05-G-0106 Delivery Order 008, PLUSNET: Persistent Littoral Undersea Surveillance Network
    • …
    corecore