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Abstract 

In this thesis, an innovative architecture for real-time adaptive and cooperative control of 
autonomous sensor platforms in a marine sensor network is described in the context of the 
autonomous oceanographic network scenario. This architecture has three major compo- 
nents, an intelligent, logical sensor that provides high-level environmental state information 
to a behavior-based autonomous vehicle control system, a new approach to behavior-based 
control of autonomous vehicles using multiple objective functions that allows reactive con- 
trol in complex environments with multiple constraints, and an approach to cooperative 
robotics that is a hybrid between the swarm cooperation and intentional cooperation ap- 
proaches. The mobility of the sensor platforms is a key advantage of this strategy, allowing 
dynamic optimization of the sensor locations with respect to the classification or localiza- 
tion of a process of interest including processes which can be time varying, not spatially 
isotropic and for which action is required in real-time. 

Experimental results are presented for a 2-D target tracking application in which fully 
autonomous surface craft using simulated bearing sensors acquire and track a moving target 
in open water. In the first example, a single sensor vehicle adaptively tracks a target while 
simultaneously relaying the estimated track to a second vehicle acting as a classification 
platform. In the second example, two spatially distributed sensor vehicles adaptively track 
a moving target by fusing their sensor information to form a single target track estimate. 
In both cases the goal is to adapt the platform motion to minimize the uncertainty of the 
target track parameter estimates. The link between the sensor platform motion and the 
target track estimate uncertainty is fully derived and this information is used to develop the 
behaviors for the sensor platform control system. The experimental results clearly illustrate 
the significant processing gain that spatially distributed sensors can achieve over a single 
sensor when observing a dynamic phenomenon as well as the viability of behavior-based 
control for dealing with uncertainty in complex situations in marine sensor networks. 
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Chapter 1 

Introduction 

The oceans are of vital importance to life on earth. They are a key component of the earth's 

climate and weather, a significant source of food, a highway over which much of the world's com- 

merce travels, and an area which is vitally important for the national defense of many countries. 

The continental shelves hold vast reservoirs of energy, the deep ocean is thought to contain large 

deposits of important minerals, and many biologists believe there are deep sea organisms that 

hold great bio-pharmaceutical potential. And yet, more is probably known about the moon and 

other bodies in our solar system than is known about the oceans right here on earth. 

A major reason for this lack of knowledge is the inhospitable nature of working in the ocean 

which rivals or exceeds that of working in space. The crushing pressures aside, it is the physical 

nature of the fluid medium of the ocean which puts great limitations on our ability to sense 

what is there. A great many of the sensing technologies developed for use on land utilize either 

optical or radio frequency (RF) energy. In the ocean, electromagnetic energy at both RF and 

optical frequencies is highly attenuated. Light is also highly attenuated by the ocean's turbidity, 

caused by tiny suspended particles of plankton or sediment which scatter or absorb the light 

energy. The tendency of the ocean to absorb RF energy also hampers navigation of underwater 

sensor platforms. On land, systems such as GPS can be used for the precision location of sensors 

to within a few meters while no system as accurate as GPS has been developed for navigating 

underwater. 

Due to the relatively high density of seawater, acoustic energy is propagated fairly well and 

its use is one of the key methods used for underwater sensing, navigation, and communications. 

Acoustic propagation in the ocean is, however, siguificautly affected by the ocean's physical prop- 



erties. Attenuation of acoustic energy by seawater increases greatly with frequency, relegating 

most applications to the lower frequency bands or short distances. Boundary conditions caused 

by the sea surface and sea bottom, the varying nature of the sound speed in the ocean caused 

mainly by temperature variations, and the tendency of the sea surface and the sea bottom to 

reflect acoustic energy lead to many difficult problems when trying to propagate acoustic energy 

for sensing, communications, and navigation. Other types of sensors are useful in the ocean envi- 

ronment as well including chemical, biological, magnetic, electromagnetic, conductivity, pressure, 

and thermal sensors. Each type of sensor will have its own characteristics modulated by the 

ocean environment. 

This work is motivated by an interest in a fundamental problem in sensor system design 

and operation far sensing in the ocean which is also applicable to sensing systems on land and 

in space. That is, how can one sense processes or the characteristics of processes which are 

intentionally or unintentionally difficult to sense using a single sensor which can only sample the 

process from a single spatial location at a given instant in time. In this work we define a process 

as the field generated by a physical event or phenomenon which can be sensed by a physical 

sensor such as those described previously. Many processes of interest are time-varying and not 

spatially isotropic and, therefore, either the process itself or some of its characteristics may not 

be observable from a single sensor platform. For other processes, spatially distributed sensors 

can add significant processing gain, reducing the sensing time and improving our estimates of the 

process parameters. 

For example, in a passive sonar context, single sensor platforms can localize contacts using 

passive bearing information but require temporal diversity to do so while multiple, distributed 

bearing sensors can immediately form a solution. In an active sonar context, the scattering of 

acoustic energy off of objects of different shapes is highly directional and is dependent on the 

spatial relationship between the source, receiver, and target. It is impossible for a single sensor 

platform carrying both source and receiver to capture the full scattered field which is useful in 

classifying the target shape. Fig. 1-l(a) and 1-l(b) show the acoustic energy scattered from both 

a sphere and a cylinder insonified by the beam from a sonar. As can be seen, the scattering from 

the cylinder is highly directional with no significant energy backscattered toward the acoustic 

source while the scattering from the sphere is more spatially isotropic. A group of distributed 

sensors would be able to capture the spatial distribution of this scattering for use in classification. 

For sampling transient oceanographic phenomena such as frontal dynamics, the spatial sampling 



(a) A sphere insonified at 3 kHz (b) A cylinder insonified at 5 kHz. 

Figure 1-1: Acoustic insonification of a sphere and cylinder. As can be seen, the scattering 
from the cylinder is highly directional with no significant energy backscattered toward the 
acoustic source while the scattering from the sphere is more spatially isotropic. 

resolution is related to the frequency content of the frontal process. Synoptic sampling coverage 

by multiple sensors can help avoid the temporal smearing that would occur in the data sampled 

by a single sensor platform. These examples, and numerous others, encompass a class of problems 

in marine sensing that can benefit from a multiple sensor approach. 

In addition to being able to address the problems that cannot be solved using a single sensor, 

the use of mobile sensor platforms working in coordination offers several additional advantages. 

They may each have different payloads, sensors, and endurance capabilities. A network of small, 

inexpensive platforms with low-performance sensors may be able to use its spatial diversity to 

outperform systems using single, very expensive, high-performance sensors. The use of multiple 

platforms also may allow one platform to stay at the surface, with a higher bandwidth link to 

other robotic or human operated vehicles, while one or more other platforms operate under the 

surface at varying depths to optimize their sensor-oriented tasks. Network survivability is also 

enhanced as the loss of one or even possibly several inexpensive sensors can be absorbed with the 

redundancy inherent in such a network. 

The question then remains as to how we can accomplish this sensing of dynamic phenomena 

in the ocean with multiple sensors. What would such a system look like and how would it behave? 

As difficult as it is to sense phenomena in the ocean with a single sensor, coordinating multiple 



sensors seems a daunting challenge. We begin by attempting to define the requirements for such 

a system. 

1.1 Requirements for a Marine Sampling Network 

In this section we attempt to define some of the major requirements for a marine sampling network 

with the goal of being able to sense and characterize dynamic ocean phenomena both natural 

and man-made using multiple, cooperating sensor platforms. These requirements will lead us to 

define a system referred to as an autonomous oceanographic sampling network [I], described in 

greater detail in Chapter 2. 

1.1.1 Mobility 

One way to provide coverage of an area with multiple sensors would be to lay out a grid of fixed 

sensors all communicating back to a central data processing location. The grid spacing of the 

fixed sensors would be related to the process under observation. In fact, this method is used 

in many ocean sensing systems. For example, there is currently a network of ocean buoys that 

monitors parameters such as sea surface temperature, currents, conductivity, and ocean wave 

statistics for use in weather and hurricane forecasting systems. However, for many problems of 

interest, laying out, a fine grid of fixed sensors is clearly impractical. This would be the case, 

for example, in applications where sensing must take place over a wide area with fine resolution 

or in deep water where the installation and maintenance costs of a sensor grid of the necessary 

size would be prohibitive. Fixed sensor systems are also not appropriate for applications where 

a temporary monitoring system is needed or in applications in which some action must be taken 

when certain conditions are sensed. The mobility of the sensor platforms is a key aspect of the 

adaptive sampling scenario, allowing dynamic optimization of the sensor locations with respect 

to the reduction in uncertainty of the process parameters we are attempting to estimate. A 

mobile sensor paradigm also allows resource optimization in scenarios where specialized sensors 

on mobile platforms can be brought to bear on a problem when more generalized sensors have 

made initial determinations. For example, in a mine countermeasures scenario, a network of 

low-frequency sonar platforms could localize a potential target and then call in additional sensor 

platforms with chemical sensors or sidescan sonars to gather additional information. In military 



target tracking applications, kill vehicles could be vectored to a target by a network of sensors 

which are simultaneously tracking and classifying the target. 

Adaptivity 

In the absence of a fine grid of sensors which can spatially sample a phenomenon simultaneously 

from multiple points, the sensors must not only be mobile but they must also be able to au- 

tonomously adapt their motion in real time according to the sampled data. This requires tight 

coordination between the sensors and the vehicle control. Given that a sensor platform may carry 

multiple heterogeneous sensors, this requires a sensor integration model that abstracts sensory 

data for use by the sensor platform control system. In Chapter 5 we describe a sensor integra- 

tion model that makes use of the concept of a logical sensor that abstracts away the details of 

the physical sensor. In Chapters 6 and 7 we use this model in two experiments using simulated 

bearing sensors where the output of the logical sensor is a target track. 

Once a sensor platform receives sensory data, the platform control system must use this en- 

vironmental state data to maneuver. Typically, our goal will be to maneuver the platform in 

such a way as to gain additional information about the process we are observing. This requires 

some sort of mapping between the environmental state data and the vehicle control parameters 

(rudder, elevator, speed, etc.) In Chapter 3, two major methods for doing this are described, the 

world model-based and the behavior-based methodologies. In the world model-based met hod- 

ology, one large model is used to map the environmental state data to the control parameters. 

However, the very large state space inherent to a marine vehicle operating in any reasonably 

complex application is prohibitive for such an approach in my view. A sensor platform may be 

dealing not only with sensor data from an application specific sensor like an acoustic array but 

also with tasks like obstacle avoidance, path planning, and navigation. A direct mapping of sensor 

states to vehicle control variables is infeasible with such a large state space. A behavior-based 

control system, in contrast, uses a number of modular computing units termed "behaviors", all 

operating in parallel, to decide the vehicle's course of action during each control cycle. During 

a control cycle, each behavior will use the current sensor state data to compute its opinion on 

the next course of action. For example, each behavior may output its preferred course, speed, 

and depth for the vehicle. The issue then arises about how to select the preferred action when 

multiple behaviors disagree. One method would be to simply pick the output of the behavior 



with the highest priority. This scheme was used by Brooks in his original layered control method 

[2]. This method, however, does not allow for the possibility of compromise between the preferred 

actions of different behaviors. In this work, we use a method for behavior-based control in which 

each behavior outputs its preferred action as an objective function over the vehicle control vari- 

ables. During each control cycle, the preferred action is decided by performing a multi-function 

optimization over all of the objective functions. The optimization is performed using the In- 

terval Programming Method (IvP) developed by Benjamin [3] to perform the optimization in a 

computationally efficient manner. This method is more fully described in Chapter 3. 

The current state of the art in sampling with underwater vehicles is primarily limited to the 

use of non-adaptive, preplanned sampling missions where the collected data is stored for offline 

retrieval and analysis. Fig. 1-2 shows typical preplanned sampling paths for an autonomous 

underwater vehicle (AUV) used to sample environmental data off the coast of Elba, Italy. The 

AUV has no capability to react to data received from its environmental sensors other than the 

navigation sensors which keep it on its preplanned course. 

Figure 1-2: Several non-adaptive sampling paths for an AUV operating off the coast of 
Elba, Italy. Data is stored for offline retrieval. The sensor platform has no capability to 
react to the sensed data. 



1.1.3 Communications 

It seems an obvious conclusion that in order for multiple sensors to coordinate their actions and 

share state information, they must be able to communicate. This is easier said than done in the 

ocean environment however. On land, RF or fiber optic communications systems are capable of 

transmitting information on the order of megabits per second or greater. In the ocean, where 

RF energy is unusable over any distance and acoustic data transmission must be used, data 

transmission rates are orders of magnitude lower due to the propagation constraints imposed by 

the ocean environment (in particular, the relatively slow phase speed of acoustic waves). This 

directly impacts the amount of information that can be shared in a marine network and the types 

of network connectivity that can be used. Since all sensor platforms must share the same acoustic 

channel, this may also limit the number of platforms that can be active. 

The amount of bandwidth needed in a cooperative sensor network is related to the sampling 

requirements of the process under observation. Processes with high frequency content require 

correspondingly high bandwidth. For processes with low frequency content, bandwidth require- 

ments may be traded off for an increased sampling period. This issue is complicated by the fact 

that the acoustic channel may also be used simultaneously by sensors and navigation systems. 

Along with sensor platform navigation, a robust communications capability is one of the two 

critical supporting technologies needed to implement an effective sensor network. 

1.1.4 Cooperation 

While coordinated marine vehicles have their advantages, they present challenges in their joint 

control to reach their combined potential. Inter-vehicle communication is limited in bandwidth 

and carefully allocated. Any kind of central continuous control is likely infeasible. In multi-vehicle 

joint exercises involved with sensing dynamic phenomena, it may not be practical or effective to 

think in terms of a single vehicle state space to which proper actions can be assigned a priori. In 

Chapter 3 we describe a behavior-based control approach where a number of behaviors operating 

in parallel use the sensed environmental state data to maneuver the sensor platform. In this 

work, we use an approach to cooperation in which some of the behaviors on the sensor platforms 

are specifically designed to use state data from other sensor platforms in order to form a decision 

on preferred platform maneuvers. This state data is shared via the communications network. 

This is a form of highly decentralized cooperative control in which there is no central planner 



dictating actions to the sensor platforms. This in keeping with the spirit of behavior-based control 

in which there is a tight coupling between control and the perceived environment. This scheme 

has an obvious advantage with respect to network survivability in that any network with central 

planning is vulnerable to to the loss of the planner, whether that function resides on another 

sensor platform or on the surface. A network with decentralized control is more able to gracefully 

degrade with the loss of particular sensor nodes. More details on cooperation are discussed in 

Chapter 3. 

1.1.5 Sensor Fusion 

Data fusion is the synergistic combination of information from different sources such as sensors 

in order to provide a better understanding of the state of the world [4]. In our marine sensor 

network application, sensor data from multiple, distributed sensor platforms must be combined. 

These sensors may be heterogeneous and may have different resolutions. For example, data from 

both range and bearing sensors may need to be combined in surveillance and target tracking 

applications. In the target tracking example with distributed sensors discussed in Chapter 7, 

two independent bearing observations from distributed sensor platforms must be combined to 

estimate a target track. A significant issue in fusing data from multiple sources is in determining 

that distributed measurements correspond to the same environmental feature [4]. This is known 

as the data association problem. This issue arises for example in tracking applications where 

multiple targets may be present. 

In order to properly fuse data from multiple sources and possibly heterogeneous sensors, 

accurate models of the process we want to observe and our sensor characteristics are imperative. 

Accurate process models allow us to derive the proper sensor platform behaviors given the state 

of the environment. These models must view the process from a probabilistic standpoint. It is 

not good enough to provide an estimate of a process parameter without also providing a notion 

of the uncertainty associated with the estimate. This also allows accurate simulation of adaptive 

sensor platform operation. The uncertainty of our estimates is related to a number of factors but 

primarily on the uncertainty of our sensor measurements, the uncertainty of the spatial location 

where the measurement was taken, and the time the measurement was taken. The uncertainty of 

the sensor measurements can be dealt with by having an accurate sensor model. The uncertainty 

in the measurement time can be easily dealt with by precision time synchronization between the 



sensor platforms. A method for doing this is discussed in Chapter 5. As discussed previously, 

platform navigation is one of the two critical supporting technologies required in a sensor network. 

At the very least, the navigation uncertainty must remain bounded over the time period the 

sensor platform is in operation. If the navigation uncertainty grows over time this will introduce 

a growing uncertainty in our sensor measurements and hence in our estimates. This is clearly 

undesirable. A number of techniques for sensor platform navigation are discussed in Chapter 2. 

1.2 Other Adaptive Sampling Work 

A number of researchers and organizations have been conducting research into adaptive sampling 

systems and algorithms. The Woods Hole Oceanographic Institution has been investigating the 

use of AUVs for chemical plume tracing [5] [6] and hydrothermal vent localization [7] [8] [9]. The 

Autonomous Undersea Systems Institute has been investigating adaptive sampling algorithms for 

oceanographic phenomena using both single and multiple cooperating AUVs [10][11]. Princeton 

University has been undertaken a major investigation into adaptive sampling with fleets of gliders 

for autonomous oceanographic sampling networks [12] [I31 [14]. MIT Sea Grant has investigated 

the adaptive use of AUVs for long-term observation of ocean eddies [15]. A number of other 

investigators have researched generic techniques for adaptive sampling [I61 [17]. 

1.3 Preview of Results 

In this work these challenges are addressed by presenting a novel architecture consisting of a 

network of sensor platforms each with an intelligent sensor supplying high-level environmental 

state data to a new type of behavior-based control system that is more suited to reactive control 

with multiple constraints than previous behavior-based implementations. Experimental results 

are presented for a 2-D target tracking application in which fully autonomous surface craft using 

simulated bearing sensors acquire and track a moving target in open water. In the first example, 

a single sensor vehicle adaptively tracks a target while simultaneously relaying the estimated 

track to a second vehicle acting as a classification platform. In the second example, two spatially 

distributed sensor vehicles adaptively track a moving target by fusing their sensor information 

to form a single target track estimate. In both cases the goal is to adapt the platform motion to 

minimize the uncertainty of the target track parameter estimates. The link between the sensor 



platform motion and the target track estimate uncertainty is fully derived and this information 

is used to develop the behaviors for the sensor platform control system. The experimental results 

will clearly illustrate the significant processing gain that spatially distributed sensors can achieve 

over a single sensor when observing a dynamic phenomenon of interest. Behavior-based control 

is also shown as a viable method for dealing with uncertainty in complex control situations in 

marine sensor networks. 

1.4 Thesis Organization 

This thesis is organized in the following manner: 

Chapter 2: Autonomous Oceanographic Sampling Networks. This chapter describes the ideas 

and the work to date regarding marine sensor networks originally envisioned in [I]. 

Chapter 3: Behavior-based Control of Autonomous Platforms. This chapter compares and 

contrasts two prevailing methods for robotic control, the world-model approach and the behavior- 

based approach as well as the various methods for action selection in behavior-based approaches. 

Here we describe the use of objective functions for action selection and the Interval Programming 

Method for computing the consensus action. 

Chapter 4: The MOOS-IvP Autonomy Architecture. This chapter describes the MOOS-IvP 

autonomy architecture used on the autonomous sensor platforms. 

Chapter 5: An Intelligent Acoustic Sensor. This chapter describes the concept of a logical 

sensor and the design of a real logical sensor for an AUV for use in a marine sensor network. 

Chapter 6: Example One: Adaptive Track and Classify. This chapter describes an adaptive 

tracking experiment involving a tracking vehicle with a simulated bearing sensor which tracks 

a target and networks the target track estimate to another vehicle acting as a vehicle with a 

classification sensor which closes range with the target position estimate. 

Chapter 7: Example Two: Adaptive Tracking with Multiple Sensors. This chapter describes 

an adaptive tracking experiment using two autonomous surface craft with simulated bearing 

sensors which cooperatively track a moving target. 

Chapter 8: Summary and Conclusions. This chapter summarizes the original contributions 

of the thesis and gives an overview of future work. 



Chapter 2 

Autonomous Oceanographic 

Sampling Networks 

By 1993, advances in robotics, communications, and sensor technology were reaching a crit- 

ical mass that allowed, for the first time, the possibility of remote, unattended sampling of 

oceanic processes over wide areas. Autonomous underwater vehicles carrying a variety of sen- 

sors held promise for adaptive sampling of oceanographic processes and coupled ocean observa- 

tion/modeling systems [I] [18]. Understandably, this possibility elicited excitement among not 

only physical scientists who wanted to gain a better understanding of oceanic processes but also 

among forward-thinking members of the defense establishment who saw a number of advantages. 

First, the understanding of basic oceanic processes and characteristics is vital in almost every 

aspect of conducting undersea warfare including, but not limited to, undersea communications 

and sonar performance. Second, having the capability of deploying undersea sensor networks 

opens up interesting possibilities not only for coast line defense but also for offensive operat ions. 

The primary motivation for the autonomous oceanographic sampling network (AOSN) concept 

originally developed in [I] by Curtin and Bellingham is that current methods for sampling under- 

sea processes are limited and these limitations are inhibiting our understanding of a wide range 

of ocean science problems. They argue that the measurement of temporal and spatial gradients 

in the ocean far exceeding current capabilities are needed to validate current models of oceanic 

processes. Some examples of the types of problems that would benefit from new methods are 

given as the mechanisms of frontal dynamics, surface dynamics, stratified turbulence, cross-shelf 

transport, deep convection, and sea ice mass balance. They argue that the current sampling done 



Figure 2-1: An Autonomous Oceanographic Sampling Network. Autonomous oceano- 
graphic sampling networks consist of a distributed system of fixed and mobile sensors 
networked together by communications nodes. 

from ships, moorings, and floats only produces quasi-synoptic twedimensional sections through 

evolving fields and that sparse sampling can introduce problems with temporal and spatial alias- 

ing. The conclusion drawn by the authors is that a robust, distributed, autonomous system with 

low unit cost is necessary to affordably meet the requirements of sampling with long durations 

and high resolution. It is clear that such a system meets many of the requirements for marine 

sensor networks discussed in Chapter 1. In this chapter we will discuss the AOSN system concept 

and enabling technologies for AOSN implementation and review much of the work to date. 

2.1 System Concept 

An AOSN system consists of a distributed network of fixed and mobile sensors deployed in an 

area of interest. Nodes in this network are comprised of moorings or buoys equipped with acoustic 

beacons, acoustic communications modems, fixed sensors, power sources, and docking facilities for 

autonomous underwater vehicles (AUVs) and surface craft. A depiction of this concept is given 

in Fig. 2. The sensor platforms in this network can either be propeller-driven or buoyancy-driven 

(e.g gliders) underwater vehicles or surface craft. The AUVs traverse the network collecting 

data samples using a variety of sensors. Key observations can be transmitted in real-time to 

one of the network nodes while full data transfer occurs during docking with specialized buoys 



designed to recharge the sensor platform batteries. Autonomous surface craft can be used as 

mobile navigation or communications nodes or they can be used to carry specialized sensors like 

sidescan sonars, for example. In oceanographic process sampling scenarios, acoustic transmission 

loss along the inter-nodal paths can be used to detect evolving fronts. A network controller then 

dispatches autonomous sensor platforms to the fiontal region where they sample the evolving 

front and adaptively alter their motion in response to both the locally-sensed gradients and the 

global data set. In surveillance applications, autonomous sensor platforms can be programmed 

to patrol in distributed orbits waiting for a target to appear within sensor range. Upon target 

detection, these platforms can adaptively track the target and relay the track information to the 

communications network. Other sensor platforms with specialized classification sensors can then 

be vectored toward the target. One of the most important advantages of the sensor network 

approach to sampling is its ability to support cooperative sampling in which two or more sensor 

platforms maneuver themselves to increase their information about a process by exchanging state 

information. This allows processes to be sampled which would otherwise be difficult or impossible 

for a single sensor to sample. 

The key advantages claimed for the AOSN concept are synoptic volume coverage, adaptive 

sampling, flexible control, energy management, and robustness to component failure. The authors 

of [I] assert that the practicality of the AOSN concept as described depends on the number of 

AUVs required, the type of AUV, and the performance of acoustic navigation and telemetry. 

Both the type and numbers of AUVs needed will heavily impact the cost of the network which, 

in the final analysis, is usually the deciding factor on the practicality of a system. 

2.1.1 Number of Sensor Platforms Required. 

Any synoptic survey system must be able to sample a process at a faster rate than significant 

changes occur in the structure if temporal aliasing is to be avoided. In order to avoid spatial 

aliasing, minimum spatial resolutions must also be maintained. These minimum sampling re- 

quirements of course drive the requirement for the number of vehicles needed to provide coverage 

of an area of ocean of a particular size. However, since autonomous sensor platforms have limited 

energy storage and the power required to operate a survey platform is heavily related to its speed, 

equations for the total energy required and the optimum number of vehicles required to survey an 

area of ocean with a particular resolution can be derived. These equations, derived in [I], show 



that the optimum number of vehicles for oceanographic sampling varies with the area of the sur- 

vey region and inversely with the required resolution and completion time as would be intuitively 

expected. There is also a weak increase in optimal vehicle number as vehicle size increases and 

hotel load decreases. As noted in the text, increasing the number of survey vehicles would allow 

the use of smaller (and presumably cheaper) vehicles because energy storage requirements are a 

major factor driving vehicle size. 

Although the authors of [I] derive the optimum number of survey vehicles needed for a given 

survey in terms of minimum energy usage, it does not consider impact of using multiple vehicles on 

survey error or quantify the impact of adaptive sampling strategies. This situation was corrected 

in Bellingham and Willcox's 1996 paper [19]. In this paper, the impact on survey error of using 

multiple survey vehicles is computed for statistical ocean processes. The results show that while 

changing the physical parameters of the sensor platform (e.g. reducing hotel load) results in a mild 

increase in survey efficiency, the largest gains in error reduction come from using multiple vehicles 

and/or using adaptive sampling strategies. The is largely the result of an effective reduction in 

survey area per sensor platform. A paper describing the derivation of performance metrics for 

oceanographic surveys with AUVs is given in [20]. 

2.1.2 Sensor Platform Type 

A network of many low-cost, light-weight underwater vehicles (see Fig. 2.1.2 and Fig. 2.1.2 [21]) 

is preferable to using a few, relatively expensive vehicles. Large vehicles are costly to build and 

operate while very small vehicles have difficulty integrating inexpensive sensors and computer 

hardware. In [I] the claim is made that moderate sized vehicles (1 - 3 m long and 0.2 m to 

0.8 m in diameter) are optimal due to their high maneuverability, high thrust to mass ratios, low 

cost, and ability to carry oceanographic sensors over ranges of at least hundreds of kilometers. 

Buoyancy driven vehicles (see Fig. 2.1.2) are also indicated for some applications, primarily 

observation of large-scale ocean processes, These vehicles are very power efficient but have low 

maneuverability and speed. Gliders could theoretically remain on station for periods of weeks to 

months but are power limited which tends to reduce the number of sensors that can be carried. 

Since [I] was written, autonomous surface (see Fig. 6 4 )  have also emerged as a candidate 

sensor platform for marine sensor networks. These vehicles bring a number of advantages to 

the AOSN concept including the ability to carry a variety of sensors, but one of their greatest 



Figure 2-2: An Odyssey-I11 AUV. This survey-class AUV is able to carry a wide variety of 
scientific sensors and is able to operate underwater unattended for long periods of time. 

Figure 2-3: The Autonomous Benthic Explorer (ABE). ABE can survey the ocean floor 
at depths up to 5500 m carrying a variety of sensors such as cameras, sonar, and chemical 
sensors. ABE is operated by the Woods Hole Oceanographic Instituion. 
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advantages is their ability to utilize the global positioning system. This allows autonomous 

surface craft to be able to act as mobile navigation and communications nodes within the network. 

This holds the promise for developing adaptively reconfigurable communications and navigation 

nodes. In particular, a reconfigurable communications network would be able to sense the local 

communications environment and be able to reconfigure their positions autonomously. 

a:;  

Figure 2-4: The Slocum glider. Gliders are very useful for sampling wide area oceanic 
phenomena. They are able t o  operate underwater for very long periods of time due t o  
their use of thermal gradients in the ocean for their motion. 

2.1.3 Acoustic Communications and Navigation. 

In the AOSN concept, acoustic communications is necessary for communication between nctwork 

nodes, between mobile sensor platforms and network nodes, and also possibly between remote 

fixed sensors and network nodes. The authors of [l] envision a sort of underwater "cellular 

telephone" system in which the network nodes perform much the same as current cellular base 

stations do. Data transfer rates for state-of-the-art acoustic modems (in 1994) are given as 

10 kbitls at 10 km and 3 kbitls at 90 km. The authors claim that these data rates enable 

both the efficient telemetry of commands to the sensor platforms but also the transfer of large 

amounts of recorded data from the sensor platforms to the network nodes. A key issue here 

is energy efficiency, measured in kbitljoule per kilometer. While efficiencies in the range of 



1 kbit /  joule/km to 100 k b i t / j d e / l r n  are manageable with sensor platforms and network nodes, 

careful trade-offs must be examined for remote sensors which may have to run unattended for 

months or years on battery power. 

Substantial advances have been made in underwater acoustic communications since 1993. 

Some of these advances are described in [22] and [23]. Advances have been made both in terms 

of energy efficiency and in data rates. Advances in underwater navigation are less clear. The 

widespread use of GPS has made it easier to precisely locate surface buoys for long and short- 

baseline navigation systems but those networks are still plagued by the same poor performance 

at long ranges. Large strides have also been made in inertial navigation systems small enough 

to be used in AUVs (e.g. laser ring gyro systems) but there is still no way to get around 

the increasing error with distance problem. Theoretical advances have been made in stochastic 

mapping approaches such as concurrent mapping and localization [24] and other feature-based 

navigation techniques [25] but no practical system has yet been fielded. There is some promise 

in the use of autonomous surface craft as mobile navigation nodes in marine sensor networks, 

leveraging the surface craft's ability to position itself with GPS and its ability to communicate 

with underwater platforms via acoustic modem. Precise time synchronization between sensor 

platforms may allow precise inter-vehicle ranging simultaneous with acoustic communications. 

2.1.4 Vehicle cost. 

One of the most critical assertions made in [I] is that AUV costs will be driven lower by economies 

of scale as computer aided manufacturing and advanced materials combine with volume manu- 

facturing. As noted earlier, the number of AUVs required is related to the area of ocean to be 

surveyed as well as the spatial sampling resolution and required survey time. In order to be able 

to achieve high-resolution surveys of any reasonable size, AUV costs must be as low as possible. 

The authors sate that a reasonable cost objective is between $10K and $50K per vehicle. 

Even though one of the critical assumptions was that low-cost manufacturing techniques and 

volume production would lower the cost of AUVs, this has not been the case. If anything, AUV 

survey vehicles are even more expensive than in 1993. For the most part this seems due to the 

fact that most AUVs are still hand-made research vehicles. The authors state that the optimum 

cost for AUVs is in the neighborhood of $10K to $20K while current prices can run 10 to 50 times 

that cost. 



2.2 Enabling Technologies. 

In [I], the authors assert that a number of "high leverage" technologies have the capability to 

subst ant ially advance A 0  SN capabilities. One of these is intelligent software control of AUVs. 

A full implementation of the AOSN concept requires that AUVs be able to implement adaptive 

sampling including the ability to coordinate/cooperate with multiple vehicles in order to optimize 

the sampling strategies with regard to variables such as time, power consumption and perhaps, 

most importantly, survey error. The optimization of AUV control strategies is highly dependent 

on models of the process to be observed. This issue, of course, is the topic of this thesis. 

Energy storage and power management of the AUVs is given as another key enabling tech- 

nology. The survey range of an AUV is determined by its energy storage capacity and its power 

usage. Obviously, an increase in the energy density of energy storage systems has the capacity to 

extend AUV range and/or reduce vehicle size, An increase in propulsion efficiency or a decrease 

in the required hotel load would also have the same effect. 

While a number of theoretical attempts at control strategies for multiple AUV systems and 

adaptive sampling have been made, no great leaps in progress have been made in this area. One of 

the more interesting attempts is described in [14] in which a virual bodies and artificial potentials 

strategy was used to control adaptive sampling among multiple vehicles in an AOSN experiment. 

This is an example of an adaptive control method known as the world-model or "sense-plan-act" 

model discussed in Chapter 3. 

Progress in energy storage has also been amazingly slow. While some attempts have been 

made to use fuel-cell technology to power AUVs, most AUVs continue to use conventional battery 

technology. Current state-of-the-art batteries for AUVs use the same lithium-polymer battery 

technology as found in laptop computers. 

2.3 Historical Developments 

2.3.1 The AOSN Project 

The AOSN project was begun with the long-term goal to create and demonstrate a reactive 

survey system, capable of long-term unattended deployments in harsh environments. Sponsored 

by the Office of Naval Research, AOSN was a collaboration between the Massachusetts Institute 

of Technology, the Woods Hole Oceanographic Institution, the University of Washington, and 



Northeastern University. The main thrust of the project was to develop both AUV technology 

and AOSN network infrastructure technology including acoustic communications [23] and vehicle 

docking technology [26] as well as the investigation of operationai techniques. There were two 

major AOSN experiments, the Haro Strait experiment and the Labrador Sea experiment. 

Haro Strait 

The goal of the Haro Strait AOSN experiment (formally the Ocean Rontal Dynamics Primer 

Initiative) [27] 1181 was to use advances in ocean modeling and AUV technology to study tidal 

mixing processes in the Haro Strait which lies between the San Juan Islands and Vancouver Island 

off of British Columbia. The main technical goals of the experiment were adaptive sampling, co- 

ordinated platform operations, and communications. More than 60 AUV runs were accomplished 

in an attempt to localize and characterize the strong tidal fronts as they moved through the 

strait. The experiment was a jointly conducted between MIT, the Woods Hole Oceanographic 

Institution, the Institute for Oceanographic Science in British Columbia, Harvard University, and 

the University of Victoria. 

Labrador Sea 

The goal of the Labrador Sea AOSN deployment was to observe convection plumes in a responsive, 

repetitive manner by providing a long-term unattended deployment capability [18]. This was the 

first attempt at long-term deployment of AUVs and gliders in an AOSN and used moorings and 

buoys in addition to the sensor platforms for RF communications and unattended recharging of 

vehicle batteries. Communications moorings were used to relay commands to the sensor platforms 

as well as receive science data from the platforms when the platforms were docked. 

2.3.2 The AOSN-I1 Project 

AOSN-I1 is an ONR-sponsored, multi-institutional, collaborative research program with the cen- 

tral objective to quantify the gain in predictive skill for principal circulation trajectories, trans- 

port at critical points and near-shore bioluminescence potential in Monterey Bay as a function of 

model-guided,remote adaptive sampling using a network of AUVs. A partial AOSN irnplementa- 

tion, AOSN-I1 will use a fleet of Slocum gliders [28] to adaptively sample the oceanic processes 

in Monterey Bay. The key research goals of the experiment are a focus on adaptive sampling and 



the opportunity to use the glider network as a reconfigurable, mobile sensor array. A major test 

of the AOSN-I1 concept using Slocum gliders was performed in 2003 [14]. 

2.3.3 The NEPTUNE Project 

The NEPTUNE project [29] [22] is a perfect example of the implementation of a prototypical 

AOSN. The goal of the NEPTUNE project is to establish a regional ocean observatory in the 

Pacific Ocean off the northeast coast of the United States. A 3000 km network of fiber optic cables 

will encircle and cross the Juan de Fuca tectonic plate, an area of nearly 500 k m  by 1000 k m  

in size. Approximately 25 experimental sites will be established at nodes along the cable. Each 

experimental site will be instrumented to sample physical, chemical, and biological parameters 

using a combination of fixed and mobile sensors interconnected by an acoustic network. The 

AUVs will reside at depth at each node where they will recharge and respond to real-time events 

such as underwater volcanic eruptions. Real-time data and command and control capabilities 

will be available via the Internet. Costing an estimated $250M to develop and operate over the 

first five years, NEPTUNE will be partially operational by 2007. 

2.4 Relevance of AOSN to this Thesis 

The focus of this thesis is a fundamental problem in sensor design and operation for real-time 

observation of ocean processes with mobile sensor platforms. This problem relates to the ob- 

servation of processes which intentionally or unintentionally are difficult to view using a single 

sensor platform and which require the use of multiple sensor platforms, each of which can sense 

the process from a different "viewpoint." Necessarily, this requires close coordination between the 

sensor platforms and the ability of the platforms to adapt their sampling (sensing) strategy to 

information received and processed in real-time. The goal is to be able to use numbers of small, 

inexpensive sensor platforms for this task. One of the applications of great interest examined in 

this thesis is the tracking of acoustic targets using passive (bearings-only) sensory data. Chapters 

6 and 7 give experimental examples of adaptive, networked target tracking with both single and 

multiple sensor platforms. 

One of the features of the AOSN paradigm that is ideally suited for the target search and 

identification problem is its sensor-adaptive nature, i.e. the pre-planned movement of the sensors 

(the AUVs in this case) can change according to the nature of their sensor readings. This allows 



for the possibility of adaptively cooperating sensors and the optimization of sensor movement. 

Current oceanographic sensor missions with mobile platforms typically involve a single vehicle 

sampling various oceanographic processes (temperature, salinity, water chemistry, biolumines- 

cence, sonar returns, etc.) within a designated volume of ocean. Collected data is stored on the 

vehicle for later post-processing. While this technique is extremely valuable for collecting data 

on certain types of processes, it also has severe drawbacks for observing other types of processes. 

Specifically, this technique fails to address situations where it is desirable to observe processes in 

the ocean that simultaneously evolve in time and space and for which real-time action is required 

based upon the evolution of the process. This would include the detection and classification of 

stationary and moving underwater targets using moving sonar sensor platforms. 

One of the primary projects which is sponsoring my work has been the Generic Ocean Array 

Technology program [30]. The GOATS program, a subprogram of AOSN, has as its goal the 

detection and classification of both proud and buried targets in very shallow water. In line with 

the AOSN paradigm, this is to be done by enabling a fleet of adaptively cooperating AUVs 

(communicating via acoustic modems) equipped with acoustic receiving arrays to process multi- 

static sonar return data from targets insonified with a low-frequency acoustic source mounted 

on one of the vehicles. Because the scattered field is not spatially isotropic in general it is 

thought that, by analyzing the spatial and temporal nature of the multi-static returns, we can 

thereby simultaneously detect and classi& the target in real-time. We believe that our proposed 

method has significant advantages over traditional sonar methods for finding and identifying 

proud and buried targets. By using the AOSN paradigm, we enable real-time transmission of 

target information to other nodes in the network. This could enable the reallocation of resources 

within the network in real-time to deal with the threat. 

Another program sponsoring my proposed thesis work entitled Persistent Littoral Undersea 

Surveillance (PLUS) follows the AOSN paradigm. PLUS is a research program that will explore 

naval systems for clandestine undersea surveillance to provide the location of submarines in far- 

forward and/or contested waters. PLUS emphasizes mobile and/or fixed multiple sensing nodes, 

networked to provide an adaptive and/or relocatable sensing grid. One concept being strongly 

examined is that of a network of AUVs with passive sonar. AUVs would be capable of passive 

acoustic detection and have the capability of adaptively tracking a moving target and interacting 

with others AUVs in the network either to increase the accuracy of the target track estimates or 

to hand off tracks to a distant portion of the network. The AOSN concept as described in this 



paper and subsequently developed, is directly applicable to this work. 



Chapter 3 

Adaptive Sensor Platform Control 

Although the state-of-the-art in marine sensor platform hardware technology has made impressive 

gains in recent years, the paradigms and software necessary to make truly adaptive sampling a 

reality have lagged behind. Sensor platforms have been relegated to the role of pre-programmed 

data collector, following a deterministic survey path through the ocean with data offloaded for 

analysis after mission completion. Fig. 1-2 shows the path of a number of actual survey missions 

completed by an AUV off the coast of Italy during an recent experiment. Although this type of 

survey mission is invaluable for many scientists, the marine sensor plat forms currently lack the 

ability to respond to external events generated by on-board processing of the collected data. In 

order to adaptively control a sensor platform in real-time, the platform control system must be 

able to make decisions about its future course based on information that is streaming in from its 

sensors. Often times, the preferred course must be determined even though the platform may 

be trying to simultaneously satisfy multiple, conflicting goals. These decisions must be made 

quickly enough to satisfy the physical control laws governing the vehicle's motion. A number 

of different approaches to this fundamental robotics problem have been advocated including the 

use of comprehensive world models as well as the pre-computing of the actions for all possible 

vehicle states. These control models are what is referred to in [3] as the "sense-plan-act" (SPA) 

or world-model approach. As noted earlier in Chapter 1, due to the very large state spaces in 

any realistic world model, these methods can lead to an intractable computing problem especially 

when a vehicle must interact in a timely fashion with a changing environment. To address this 

problem, we turn our attention to the use of behavior- based methods which are thought to be well 

suited for reactive control in complex environments. In this chapter, we will compare and contrast 



the behavior-based and world-model approaches, describe a number of behavior-based methods 

in detail, provide an innovative solution to the preferred action selection problem inherent in 

behavior-based methods, and describe a distributed sensor platform control architecture well 

suited to supporting adaptive, cooperative control in marine sensor networks. 

3.1 The World Model-Based Approach 

Environmental Feedback Environmental Feedback 

reason about objects 
plan changes 

identifv obiects . w 
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build maps 
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(a) The world-model control approach. (b) The behavior-based control approach 

Figure 3-1: This figure compares the traditional world-model approach to robot control 
(a) which breaks the control into sequential functional modules with the behavior-based 
approach (b) in which task-achieving behaviors act in parallel [2]. 

Fig. 3-l(a) shows the basic SPA approach in which, during each control cycle, the sensors are 

sampled, a planning model is used to map the sensor states to the control output and decide the 

task execution, and the actuators change the vehicle state. Feedback is implicitly provided on the 

next control cycle through the sensors. One simple way to do this is to preplan the control output 

for all combinations of sensor input. The cornbinatorial explosion of the state space for even 

mildly complex environments make this met hod prohibitive, however. Most implement ations of 

the SPA control methodology use some form of a model of the world which maps the sensor states 

to the actuator states. This can actually work quite well for very simple situations. However, in 

complex situations where many simultaneous constraints must be met (e.g. obstacle avoidance, 

navigation, adaptive sampling, cooperation, etc.) , the size of the state space can be prohibitive. 

A very recent example of a control application in this genre is given in [31] where the authors 

steer an ultralight aircraft using visual sensors with a fly-inspired control model. 



3.2 Behavior-Based Approaches 

In an attempt to deal with the problems encountered by the traditional AI-type robot control 

architectures in use in the early 1980s (in particular the world-model approach), a new control 

paradigm came into prominence. Termed "behavior-based", this new approach sought to decom- 

pose the control architecture of a robot into discrete modules termed "behaviors", each operating 

in parallel and each able to provide a preferred control output during each control cycle (see Fig. 

3-l(b)). One of the early advocates of this approach was Rodney Brooks, whose subsumption 

architecture [2] has been since incorporated into many robotic systems. According to Brooks, 

behavior-based approaches are able to deal with one of the biggest issues in robotics, the issue of 

how to control a robot in the face of multiple, conflicting goals especially when the control system 

must deal with the environment in real-time. One of the defining characteristics of behavior-based 

control methodologies is the tight coupling between the environment (as sensed by the robot in 

real-time) and the vehicle behavior. A reliance on long-range planning is not a characteristic of 

this method. The common issue faced by all behavior- based control models, however, is the issue 

of how to arbitrate between the conflicting opinions of different behaviors. In this section we will 

examine a number of behavior-based approaches with increasingly complex arbitration schemes. 

Layer 2 
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Figure 3-2: This figure depicts the layered control model (subsumption architecture) [2]. 
Each layer is a task-oriented behavior such as those shown in Fig. 3-l(b). Sensors inputs 
are processed in parallel. At every control cycle each behavior can output its preferred 
actuator control parameters. The output of higher-level (lower priority) behaviors can be 
suppressed if a lower-level behavior provides an output of the same control parameter. 

3.2.1 Subsumption Architecture 

In Brooks' subsumption architecture for robotic control, a network of augmented finitestate 

machines (AFSMs) provides control input to the low-level control system of the robot. Each 



of the AFSMs, known as behaviors, competes for the right to provide its control input to the 

control system but only the behavior with the highest priority is allowed to do so. Each of the 

AFSMs can contain its own set of internal timers, sensor inputs, and memory storage. Each of 

the AFSMs can also be wired to inhibit or enable the action of another AFSM. The attraction 

of this approach is that a bottom-up control system can be defined whereby the interaction of 

many simple behaviors running in parallel can result in seemingly complex behavior. In Brooks' 

subsumption architecture, each behavior is prioritized. During each control cycle, each behavior 

is able to propose a subset of vehicle control parameters (e.g.course, speed) with the highest 

priority behavior being able to send its parameters to the vehicle hardware for action (see Fig. 

3-2). In this way Brooks felt, the control system could be responsive to higher level goals while 

still being able to service low-level (but potentially high priority) goals like vehicle safety. 

A common criticism of this "winner takes all" arbitration scheme is that it leaves no room 

for inter-behavior compromise. Given multiple priorities, it seems likely that the objectives of 

one or more behaviors can be met simultaneously, if not with 100% efficiency, then with some 

measure of efficiency which contributes to the overall mission objective. For example, in the single 

bearing target tracking example described in Chapter 6, the sensor platform must manage several 

competing behaviors including closing range with the target while trying to keep the proper angle 

between the target and the simulated acoustic line array. 

3.2.2 State-Configured Layered Control 

A form of Brooks' subsumption architecture, termed st ate-configured layered control [32], has 

been incorporated into the control system of the Odyssey autonomous underwater vehicle at 

MIT. In state-configured layered control, only certain behaviors are actually active at  any given 

time depending on the state of the vehicle state table (to reduce computational costs). This 

can simply be seen as being Brooks' original scheme with the vehicle states being inhibitory or 

enabling inputs to the behaviors. To date, only an extremely simple version of state-configured 

layered control has been implemented on the AUVs at MIT. In particular, the behaviors do not 

have the ability to enable or inhibit other behaviors directly (except possibly indirectly through 

the use of the vehicle state table) and do not have access to internal timer constructs. Additionally, 

only the most simple behaviors have been developed such as moving the AUV in straight lines or 

circles and possible repeated sequential combinations of straight lines and circles or polygons. 



3.2.3 Motor Schemas 

One behavior-based control methodology which uses an arbitration scheme designed to compro- 

mise between competing behaviors is that of motor schema [33]. In the motor schema control 

scheme, each behavior (motor schema) uses a potential field representation to represent desired 

paths and obstacles. At each control cycle, each motor schema outputs a desired vehicle velocity 

vector which is then vector-summed by the arbiter. This vector is then used to provide steering 

and speed commands to the vehicle hardware. As obstacles are discovered by the vehicle sensors, 

new motor schemas can be instantiated and used in subsequent control cycles. Fig. 3-3(a) and 

Fig. 3-3(b) shows representations of two motor schema vector fields, the go-to-goal schema and 

the obstacle schema. Fig. 3-4 shows the vector sum of these two schema. Placed anywhere in 

the field, a robot using motor schema control will follow the vector field to the goal. This scheme 

differs from the subsumption architecture in two important ways. First, a compromise between 

all active behaviors is reached by calculating the vector sum of their respective outputs. There 

is no layering or priority in this scheme. Second, new schemas can be instantiated dynamically 

as features in the environment are encountered. 

(a) The Go-to-goal motor schema. (b) The obstacle motor schema. 

Figure 3-3: This figure shows the  vector fields associated with two motor schemas, the 
go-to-goal motor schema (a) and the  obstacle motor schema (b). 

Balch and Arkin describe five motor schema behaviors which they used to control the robots in 

their experiment. These included a schema for avoiding obstacles, one for maintaining the proper 



distance from other vehicles, one for moving toward a navigational goal, one for maintaining 

formation, and one for introducing noise into the output vector to break deadlocks. There are 

Figure 3-4: This figure shows the  vector sum of the go-to-goal and obstacle motor schemas. 
Placed anywhere in the field, a robot using motor schema control will follow the vector 
field t o  the goal. 

several negative aspects to the motor schema approach. First, there is no guarantee that the 

simple vector sum of two schemas will result in stable platform motion. In fact, the simple sum 

of velocity is subject to the same problems common to all potential field control approaches such 

as the unintentional introduction of local minima, attractors and limit cycles in which the robot 

can become trapped. Second, the average behavior is not necessarily the optimum behavior. The 

motor schema approach allows no consideration or ranking of alternative actions. Other work 

investigating the use of potential functions for robotic control can be found in [34] [35] [36] [37]. 

3.2.4 The Multiple Objective Function Approach 

In [3], Benjamin takes the view that simple arbitration schemes that suppress all but the most 

important behavior or average or convolve an overall action from multiple behaviors are meth- 

ods that lead to unacceptable shortcomings in overall vehicle behavior, a view also shared by 
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Figure 3-5: This figure depicts the multiple objective function approach to  action selection 
in a behavior-based control system. Each behavior outputs a function over the vehicle 
control parameters such as heading, course and speed. The preferred action is then found 
by multi-function optimization over all the objective functions. 

others [38] [39] [40]. Benjamin argues that each behavior should produce alternative actions in 

addition to the preferred action in order to allow multiple, interacting behaviors to effectively 

compromise. This leads to a behavior-based control method in which each behavior produces 

an objective function whose domain is the vehicle control parameters (e.g. course, speed, and 

depth) during each control cycle. These objective functions are then subjected to a multi-function 

optimization to produce the preferred control parameters (see Fig. 3-5). The control output is 

then, in some sense, a collective decision based on all of the competing goals for the vehicle. The 

major drawback to this approach is that the multi-function optimization is computationally in- 

tensive, especially for small sensor platforms with limited computing resources. In [3], Benjamin 

describes a computationally efficient method for solving the multi-function optimization. In this 

method, called the Interval Programming (IvP) method, the objectives functions are described 

in a piecewise linear manner. The multiple objective function approach using the IvP model was 

used to execute the adaptive control experiments described in Chapters 6 and 7 and is described 

further in Section 4.1.1. 

3.3 Cooperative Control 

In my opinion, in order to find a workable solution to the seemingly complex problem of multi- 

robot cooperation, one needs to have a view of what the nature of an autonomous robot is. 

In my own study of this issue, I believe that Brooks said it best in his Pseudo-Definition 3 

[41] where he states: "An autonomous (artificial) creature is one that is able to maintain a 



long term dynamic with its environment without intervention. Once an autonomous artificial 

creature is switched on, it does what it is in its nature to do." It therefore seems reasonable 

that cooperative behavior could be built using the behavior-based control approach of the single 

robot but with certain of its behaviors being cooperative, "cooperative behaviors" if you will. 

In our current context, these cooperative behaviors would require state information about the 

other robots or environmental st ate information collected by the other robots, either actively 

or passively gained. As a practical matter of course, cooperative robot behavior also requires 

certain technological achievements including the ability of the robots to communicate or at least 

to be able to sense the state of the other robots. One issue that cannot be overlooked is that 

of the robustness of the behaviors to the reality of the world. In the real world, communication 

may be slow or intermittent, sensor readings are always noisy, and unexpected events may occur. 

Any cooperative robotic behaviors must be robust with respect to these issues. In [42], Parker 

breaks robot cooperation into two distinct genres termed "swarm cooperation" and "intentional 

cooperation". Parker draws parallels between these two types of robotic cooperation and forms 

of societies in the animal kingdom. 

3.3.1 Swarm Cooperation 

Swarm cooperation is characterized by large groups of heterogeneous robots that perform repet- 

itive tasks over large areas. Such examples could include mapping, mining, sorting, exploring, 

surveying, and construction. In this type of cooperation, robots do not explicitly cooperate to 

complete a task. Typically they can sense the environment and the positions of the other robots 

in the group. Each robot bases its motion on its own local control law and the global behavior of 

the group is emergent from the interactions of each robot acting according to that control law. 

One of the most interesting cooperative group behaviors is formation control which is covered in 

detail in Section 3.3.3. A number of researchers have considered robotic systems using this type of 

cooperative behavior including Brooks et a1 1431 who considered control strategies for soil-moving 

robots on a simulated lunar base, Nguyen et al. [44] with their Basic UXO Gathering System 

(BUGS), and Konolige et al [45] with their multi-agent system for mapping and exploration. The 

only multi-robot system implemented in a marine sensor environment that I am aware of was the 

multi-glider system used in the AOSN-I1 experiment discussed in Section 2.3.2 and detailed in 

P41. 



3.3.2 Intentional Cooperation 

Intentional cooperation among multiple robots is usually characterized by small groups of possibly 

heterogeneous robots which actively cooperate to accomplish a task or mission. Parker notes that, 

traditionally, research into this type of robotic cooperation breaks down into two camps, those 

using traditional "sense-plan-act" models of adaptive control and task allocation models and 

those from the distributed A1 community where task allocation is the driving force behind the 

cooperative architectures. 

In this work we implement a form of intentional cooperation different from that generally 

found in the literature. In this approach there is no mechanism for task allocation because each 

robot knows how to do its task based on the behaviors it is programmed with. Cooperation is 

implemented by allowing the robots to share state data about themselves and the environment. 

I compare this approach to the cooperation used by some insects in which "searcher" insects are 

responsible for searching the environment for food. When food is found, the searcher insects will 

communicate the location to other, "gatherer" insects which then gather the food and bring it 

into the communal storage. This simplifies task allocation because each robot is responsible for 

only one task, the one it is programmed for and its behavior is directly linked to the state of the 

environment and the other robots. The tracking example detailed in Chapter 7 uses this form 

of cooperation in which the sensor platforms share sensor data. Based on the sensor data, the 

platforms position themselves appropriately to efficiently track the target. One criticism of this 

approach might be that it requires some knowledge of a mapping between the environment state 

and the behavior of the robot. This is true but the use of a behavior-based approach makes this 

a tractable method. 

3.3.3 Formation/Flocking Behaviors 

Formation keeping is an important aspect of navigation for many types of military maneuvers 

with troops and vehicles as well as a number of search and rescue, agricultural, and security 

patrol applications. As autonomous robots gain a place as members of these formations, an 

automated method for keeping each vehicle in formation is necessary. Formation keeping is 

especially important where sensor assets are limited for it allows an efficient partition of the 

search space among the members of a group. In [46], Balch describes a behavior-based approach 

to robotic control that could potentially allow a robotic team to reach navigational goals, avoid 



hazards, and simultaneously remain in formation with the type of formation used being dependent 

on the task assigned to the team. 

As the article notes, formation control is well known in the animal kingdom where it is used 

to gain many of the same benefits as those we seek for our robotic teams, including the ability 

to maximize sensor coverage and provide for group protection [47] [48]. These aggregate flocking 

and schooling behaviors are a combination of both a desire to remain within the group but yet 

remain some distance from the other members of the group. In nature, the flocking behavior is 

dependent only on each individual having local knowledge of the environment and the positions 

of its nearest neighbors. The parameters which control the desired group size and individual 

distances no doubt depend on the state of the group (e.g. feeding, fleeing, traveling, etc.) In this 

article, a number of pre-specified geometrical formations are considered for which each individual 

robot's position relative to the group is specified and maintained. Each of these formations is 

examined for its appropriateness in particular task environments. 

Four formations were examined in the article, line, column, diamond, and wedge. At every step 

in the control cycle, each vehicle computes its proper position in the formation. The maintain- 

formation schema then generates a movement vector toward the desired location. Each robot 

determines its proper position in the formation based on its knowledge of the location of the 

other robots. Each robot determines the position of the other robots by either direct perception, 

via dead reckoning or via transmitted GPS coordinates. Three different methods for each robot 

to determine its proper position in the formation identified: 

Unit Center Referenced: Each robot computes the centroid of the formation and de- 

termines its preferred position relative to that "unit center". 

Leader Referenced: Each robot computes its preferred position relative to the position 

of the lead robot. The lead robot does not maintain formation. 

a Neighbor Referenced: Each robot maintains its position relative to one other robot in 

the formation. 

Other work on formation control can be found in [49][50]. 

In a swarm, each vehicle navigates according to its own perception of its local environment 

(including its perception of other robots in the swarm) and its own local control law. In 1141, a 

swarm of gliders is used to adaptively sample various processes in Monterey Bay. In this case, the 



glider swarm maintains formation using a method called Virtual Bodies and Artificial Potentials 

(VBAP) which is a complex method of implementing adaptive leader-referenced formation control 

in a provably stable manner. The type of formation keeping used in the Monterey experiment 

used a type of leader-referenced formation using what is called a "virtual leader". A virtual 

leader is simply a point in space acting as a leader for the formation rather than a physical sensor 

platform. 

As discussed earlier, formation control is an example of "swarm" cooperation in multiple 

robot systems. One characteristic of this type of cooperative system is that all of the robots 

in the system are homogeneous. Another characteristic is that there is no explicit cooperation 

between the vehicles. While the first characteristic, that of vehicle homogeneity, has little impact 

on my proposed thesis work, an approach with no explicit cooperation between vehicles is not 

a viable option. For the moving target tracking problem, the solution for the target track can 

be computed using bearing measurements taken from multiple sensor platforms. In order to 

compute this solution, however, information must be explicitly exchanged between vehicles. For 

the bi-static and/or multi-static classification of stationary targets, it is possible that a swarm 

type approach to cooperation might be feasible if each vehicle knew the positions of all other 

vehicles in the swarm and there were a large number of vehicles. In this case, each member of 

the swarm would compute its own estimate of target locations and classifications. However, one 

of the goals of my research is to  identify how to use simultaneous sensor measurements from 

distributed sensor platforms in order to optimize the vehicle trajectories in order to improve 

detection and/or classification performance. In order to accomplish this, the vehicles would need 

to explicitly exchange target information and perhaps also path planning information. 





Chapter 4 

The MOOS-IvP Autonomy 

Architecture 

4.1 A Distributed Control Architecture for Marine 

Sensor Plat forms 

In this section we discuss the general autonomy architecture that has been developed for use on 

mobile marine sensor platforms and how the particular components that reflect the contribution 

of this work fit into that architecture. This architecture was used to execute the autonomous 

tracking experiments described in Chapters 6 and 7. 

4.1.1 Behavior-Based Control with Interval Programming 

By using multi-objective optimization in action selection, behaviors produce an objective function 

rather than a single preferred action ([51, 52, 401). The Interval Programming (IvP) model 

specifies both a scheme for representing functions of unlimited form as well as a set of algorithms 

for finding the globally optimal solution. All functions are piecewise linearly defined, thus they 

are typically an approximation of a behavior's true underlying utility function. Search is over 

the weighted sum of individual functions and uses branch and bound to search through the 

combination space of pieces rather than the decision space of actions. The only error introduced 

is in the discrepancy between a behavior's true underlying utility function and the piecewise 

approximation produced to the solver. This error is preferable compared with restricting the 



function form of behavior output to say linear or quadratic functions. Furthermore, the search 

is much faster than brute force evaluation of the decision space, as done in [40]. The decision 

regarding function approximation accuracy is a local decision to the behavior designer, who 

typically has insight into what is sufficient. The solver guarantees a globally optimal solution 

and this work validates that such search is feasible in a vehicle control loop of 4Hz on a 6OOMHz 

computer . 
To enhance search speed, the initial decision provided to the branch and bound algorithm 

is the output of the previous cycle, since typically the optimal prior action remains an excellent 

candidate in the present, until something changes in the world. Indeed when something does 

change dramatically in the world, such as hitting a way-point, the solve time has been observed 

to be up to 50% longer, but still comfortably under practical constraints. 

Although the use of objective functions is designed to coordinate multiple simultaneously 

active behaviors, helm behaviors can be easily conditioned on variable-value pairs in the MOOS 

database to run at  the exclusion of other behaviors. Likewise, behaviors can produce variable- 

value pairs upon reaching a conclusion or milestone of significance to the behavior. In this way, a 

set of behaviors could be run in a plan-like sequence, or run in a layered relationship as originally 

described in [53]. 

4.1.2 The MOOS-IvP Autonomy Architecture 

This work uses the MOOS-IvP architecture for autonomous controk. MOOS-IvP is composed of 

the Mission Oriented Operating Suite (MOOS), a open source software project for coordinating 

software processes running on an autonomous platform, typically under GNU/Linux. MOOS- 

IvP also contains the IvP Helm, a behavior-based helm that runs as a single MOOS process 

and uses multi-objective optimization with the Interval Programming (IvP) model for behavior 

coordination, [51, 541. See [55] and [56] for other examples of MOOS-IvP on autonomous marine 

vehicles. 

A MOOS community contains processes that communicate through a database process called 

the MOOSDB, as shown in Fig. 4-l(a). MOOS ensures a process executes its "Iterate" method at 

a specified frequency and handles new mail on each iteration in a publish and subscribe manner. 

The IvP Helm runs as the MOOS process pHelmIvP (Fig. 4-l(b)). Each iteration of the helm 

contains the following steps: (1) mail is read from the MOOSDB, (2) information is updated 
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Figure 4-1: The IvP Helm runs as  a process called pHelmIvP in a MOOS community. 
MOOS may be composed of processes for data logging (pLogger), data fusion (pNav), 
actuation (iPWMController), sensing (iGPS), communication (pMOOSBridge, iMicroMo- 
dem), and much more. They can all be run at different frequencies as shown. 

for consumption by behaviors, (3) behaviors produce an objective function if applicable, (4) the 

objective functions are resolved to produce a single action, and ( 5 )  the action is posted to the 

MOOSDB for consumption by low-level control MOOS processes. The behaviors responsible for 

control in the tracking and classificatioil vehicles are discussed in Section 4.2. 

4.2 Sensor Platform Behaviors 

This section describes the behaviors used in the IvP Helm to execute the experimental missions 

described in Chapters 6 and 7. Three different types of behaviors are used on the sensor platform 

to produce a complete mission: 

1. Safety behaviors - These behaviors are run in paallel with the other behaviors in order 

to maintain a safe operating environment for the sensor platform. Safety behaviors can 

include behaviors for avoiding obstacles, staying in a safe operating zone, mission timeouts, 

and behaviors for emergency events which require immediate attention. 

2. Non-adaptive behaviors - These behaviors are usually sequenced with the adaptive behav- 

iors to provide a robust capability for the sensor platform to operate during times when the 

adaptive behaviors are not active. These can include transiting to and from the operations 

areas and patrolling the operations area. 



3. Adaptive behaviors - These behaviors activate when a target is detected and adaptively 

control the platform motion during the tracking phase using target track information from 

the intelligent sensor. 

4.2.1 The OpRegion Behavior 

The OpRegion behavior is a safety behavior responsible for insuring the sensor platform remains 

in a predetermined safe operating area. The behavior is configured with a single polygon and 

will result in an all-stop signal (THRUST=O) to the low level controllers if the vehicle leaves the 

operation area. The OpRegion behavior does not produce an objective function. It just informs 

the helm that there is a critical condition that should trump all behaviors and produce the action 

of all-stop. In this sense, the relationship of behavior is not unlike Brooks' layered approach 

where a critically important module can trump all others without seeking compromise. 

4.2.2 The Waypoint Behavior 

The Waypoint behavior is responsible for moving the sensor platform from one point to another 

along the shortest path. The behavior is configured with a list of waypoints and produces objective 

functions that favorably rank actions with smaller detour distances along the shortest path to 

the next waypoint. This behavior is used by the target vehicle in the experiments to form a 

constant velocity motion, for example, and multiple waypoints can be sequenced together to 

form platform motion along arbitrary polygons. Every vehicle is typically configured with an 

instance of this behavior having a single waypoint just off the starting area, conditioned on 

both a "mission-complete" or "return=trueV condition for returning all vehicles upon mission 

completion or recalling them mid-mission should the need occur. The objective function for this 

behavior is three-dimensional over course, speed, and time. 

4.2.3 The Orbit Behavior 

The Orbit behavior (see Fig. 4-2) is responsible for providing a patrol capability in which the 

vehicle will orbit a fixed point. Given an orbit center, the behavior dynamically determines a list 

of waypoints to form the orbit. Parameters to this behavior allow the choice of clockwise/counter- 

clockwise orbits as well as the number of waypoints in the orbit path and the vehicle speed. The 

objective functions for this behavior are identical to the standard waypoint objective functions 



described in Section 4.2.2. The Orbit behavior can be conditioned to be active when no target 

is being tracked and to deactivate itself upon target detection. The orbit behavior always has a 

weighting of 1.0. 

Figure 4-2: The Orbit behavior. The Orbit behavior is responsible for keeping the sensor 
platform in orbit around a fixed point at a fixed radius. 

4.2.4 The ArrayTurn Behavior 

The ArrayTurn behavior (see Fig. 4-3(a)) is responsible for providing a vehicle turning motion 

such that sensor platforms with acoustic line arrays can determine which side of the array the 

target is on. This behavior requires tight integration with the acoustic sensor which signals 

when the left/right ambiguity has been cleared. The objective function for this behavior is one- 

dimensional over course and bimodal, with the modes centered around the two possible course 

choices which are ninety degrees from the vehicle's course when the behavior is activated (he 

course fix). The mode that is centered at  the course closest to the vehicle's current course is 

weighted in order to prevent frequent oscillation between the two modes. Fig. 4-4 shows a plot 

of the objective function for this behavior for a course fix of zero degrees and a current course of 

five degrees. Note how the mode closest to the current course is weighted slightly higher. Fig. 

4-4 shows a plot of the objective function for the ArrayTurn behavior for a course fix of zero 

degrees and a current course of fifty degrees. Note how the mode closest to the current course has 

increased its weight relative to the other mode for the situation shown in Fig 4 4 .  The ArrayTurn 

behavior has a constant weighting of 1.0. 



(a) The ArrayTurn behavior (b) The ArrayAngle behavior 

Figure 4-3: The ArrayTurn and ArrayAngle Behaviors are both one-dimensional over over 
course and bimodal. The ArrayTurn behavior is responsible for turning the vehicle up on a 
target detection in order to clear the leftlright ambiguity on the line array. The ArrayAngle 
behavior is responsible for keeping the line array as close as possible to broadside with the 
target given other motion constraints. 
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Figure 4-4: Objective function for the ArrayTurn behavior. This figure shows a plot of 
the objective function for the ArrayTurn behavior for a course fix of zero degrees and a 
current course of five degrees. Note how the mode closest to the current course is weighted 
slightly higher. 
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Figure 4-5: Objective function for the ArrayTurn behavior. This figure shows a plot of the 
objective function for the ArrayTurn behavior for a course fix of zero degrees and a current 
course of fifty degrees. Note how the mode closest to the current course has increased its 
weight relative to the other mode for the situation shown in Fig 4-4. 

4.2.5 ArrayAngle Behavior 

The ArrayAngle behavior (see Fig. 4-3(b)) is responsible for holding a vehicle course such that 

sensor platforms with acoustic line arrays will have the array as close as possible to broadside 

with the target given the other constraints on vehicle motion. The objective function for this 

behavior is one-dimensional over course and bimodal, with the modes centered around the two 

possible course choices that keep the array oriented at broadside with respect to the target. The 

mode that is centered at the course closest to the vehicle's current course is weighted in order 

to prevent frequent oscillation between the two modes. Fig 4-6 shows a plot of the objective 

function for the ArrayAngle behavior for a target bearing of zero degrees and a current course of 

fiRy degrees. Note how the mode closest to the current course is weighted slightly higher. Fig 4-7 

shows a plot of the objective function for the ArrayAngle behavior for a target bearing of zero 

degrees and a current course of minus fifty degrees. Note how the mode closest to the current 

course has increased its weight relative to the other mode for the situation shown in Fig 4-6. 

Fig 4-8 shows a plot of the dynamic weighting for the ArrayAngle behavior. Beyond a specified 

maximum range, the weighting of the ArrayAngle behavior is 0.1 otherwise it is weighted at 1.0. 
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Figure 4-6: Objective function for the ArrayAngle behavior. This figure shows a plot of 
the objective function for the ArrayAngle behavior for a target bearing of zero degrees 
and a current course of fifty degrees. Note how the mode closest to the current course is 
weighted slightly higher. 
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Figure 4-7: Objective function for the ArrayAngle behavior. This figure shows a plot of 
the objective function for the ArrayAngle behavior for a target bearing of zero degrees and 
a current course of minus fifty degrees. Note how the mode closest to  the current course 
has increased its weight relative to the other mode for the situation shown in Fig 4-6. 
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Figure 4-8: Dynamic Weighting for the ArrayAngle Behavior. This figure shows a plot of 
the dynamic weighting for the ArrayAngle behavior. Beyond a specified maximum range, 
the weighting of the ArrayAngle behavior is 0.1 otherwise it is weighted at 1.0 

4.2.6 CloseRange Behavior 

The CloseRange behavior is designed to close the distance to a target being tracked by the on 

board sensor subject to a minimum approach distance. The behavior produces objective functions 

that axe three-dimensional over course, speed, and time and rates actions favorably that have a 

smaller closest point of approach (CPA). Fig. 4-9 shows a plot of the dynamic weighting for the 

CloseRange behavior. Below a specified minimum range, the CloseRange behavior has a weight 

of zero, and increases linearly to a weight of 1.0 at a range of 333m beyond the minimum range. 

These values me configurable depending on the scale of the experiment. 

4.2.7 Classify Behavior 

The Classify behavior used in this demonstration is active on the classify vehicle and is identical to 

the CloseRange behavior described in 4.2.6 with the exception that the target track information 

is provided from an external source (in this case the tracking vehicle), instead of an on-board 

sensor. 
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Figure 4-9: Dynamic Weighting for the CloseRange Behavior. This figure shows a plot of 
the dynamic weighting for the CloseRange behavior. Below a specified minimum range, 
the CloseRange behavior has a weight of zero, and increases linearly to a weight of 1.0 at 
a range of 333 m beyond the minimum range. These values are configurable depending on 
the scale of the experiment. 

4.2.8 Formation Behavior 

The formation behavior is responsible for maintaining two sensor platforms in formation in a 

track and trail scenario behind the target using the current target position estimate as a virtual 

leader. The optimal formation consists of the sensor platforms maintaining a ninety degree angle 

with respect to the target position estimate while trailing at a fixed trail distance r. The objective 

functions for this behavior are three dimensional over course, speed and time. shows a plot of 

the metric applied to a proposed combination of course, speed, and time, that results in a value 

for the separation angle between this sensor platform and its partner sensor platform. It should 

be noted that the separation is computed using the current position of the other sensor platform 

which is also calculating the separation angle. This can lead to dynamic instability problems 

if there is not enough damping in the vehicle motion. The formation behavior always has a 

weighting of 1.0. 



Figure 4-10: Formation behavior for 2-vehicle cooperative target tracking. The formation 
behavior is responsible for maintaining two sensor platforms in formation in a track and 
trail scenario behind the target using the current target position estimate as a virtual leader. 
The optimal formation consists of the sensor platforms maintaining a ninety degree angle 
with respect to the target position estimate while trailing at a fixed trail distance r. 
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Figure 4-11: Formation Behavior Metric. This figure shows a plot of the metric applied to a 
proposed combination of course, speed, and time, that results in a value for the separation 
angle between this sensor platform and its partner sensor platform. It should be noted that 
the separation is computed using the current position of the other sensor platform which 
is also calculating the separation angle. This can lead to dynamic instability problems if 
there is not enough damping in the vehicle motion. 





Chapter 5 

An AUV Intelligent Sensor for 

Real-Time Adaptive Sensing 

As discussed in Section 1.1.2, adaptive sensor platform motion requires tight integration between 

the sensors and the control system. However, the concept of a "logical sensor" [57] [58] [59] allows 

an abstract view of a sensor that allows the actual details of the physical sensor to be hidden 

or abstracted away in much the same way as  an abstract data type does in software engineering 

[4]. This is especially useful if multiple physical sensors contribute to forming a piece of sensory 

information. In [4], the authors give an example of a logical sensor-based range finder based 

on the inputs from three physical sensors, two of which are optical cameras and the third being 

an ultrasonic sensor. The logical sensor contains all of the processing algorithms necessary to 

form a range from the three physical sensors. The control system of a sensor platform with this 

logical range finder sensor would then have access to the composite range output without having 

to worry about how that range was developed. Such a logical sonar sensor has been developed 

to support a number of adaptive sampling projects such as the GOATS program for multi-sensor 

mine counter-measures (MCM) and the PLUSNet program for detection and tracking of moving 

underwater targets. 

5.1 A Logical Sonar Sensor 

The logical sonar sensor consists of the physical acoustic sampling hardware as well as algorithms 

that abstract the real-time data into higher forms of information suitable for the behavior-based 



control system. Because of the distributed MOOS architecture, the actual sensor and processing 

algorithms (MOOS processes) of the logical sensor may well reside in a separate vehicle pay- 

load from the main vehicle control computer. The tracking vehicles in this work use a set of 

tracking algorithms that run in a single MOOS process called pTracker (see Fig. 4-l(a)). This 

process subscribes to target bearing data from the MOOS database as input to the tracking algo- 

rithms. The bearing data is either produced by another MOOS process interfaced with a physical 

bearings-only sensor, or the bearing data is produced by an alternative MOOS process that sim- 

ulates bearings-only sensor data. The pTracker process then produces and posts track solution 

information to the MOOSDB to be consumed by any other MOOS process including inter-vehicle 

communications processes like pMOOSBridge or iAcousticModem or the behaviors in the vehicle 

control system. Feedback from the platform behaviors is available for dynamically changing the 

sensor parameters in response to the platform state. More information on the algorithms for the 

pTracking process is given in Chapter 6 for the passive tracking with a single sensor platform and 

in Chapter 7 for passive tracking with two sensor platforms. 
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Figure 5-1: The logical sonar sensor. Rather than passing raw bearing data directly to 
the platform control system, the sensor processes the bearing data into a higher level 
of abstraction suitable for a behavior-based control system. Feedback from the platform 
behaviors is available for dynamically changing the sensor parameters in response to the 
platform state. 

The integration of the physical acoustic sensor and the processing algorithms into a logical 

tracking and localization sensor allows the behavior-based control system to make decisions about 

vehicle control based on high-level state information like a target track or a target location without 

having to worry about how the information was formed. This modular, distributed approach to 

sensing integrates very well withing the MOOS-IvP architecture for adaptive vehicle control. 



5.2 Design Goals for the Physical Sonar Sensor 

Given our principal goal of being able to perform multi-static detection and classification of proud 

and buried targets in real-time as well as passive tracking of acoustic targets using AUVs, the 

following design goals were adopted for the sonar payload: 

Mechanical/Electrical The sonar payload should integrate with the Odyssey-I11 AUV 

manufactured by the Bluefin Robotics Corporation and currently used by both MIT and 

the U.S. Navy as research vehicles (see 2.1.2). The power consumption of the payload 

should allow at least three hours of vehicle run-time before recharging of the batteries 

is necessary. Because the application demands operation only in shallow or very shallow 

water, a depth rating of 100 msw is considered sufficient. The pressure vessel should be 

capable of dissipating up to 150 watts of internally generated heat while keeping the internal 

temperature at a maximum of 45 degrees Celsius while underwater. 

Receiving Array  Integration The sonar payload should be capable of integrating with 

both single and dual 16-element line arrays. 

Acoustic Source The sonar payload should be able to drive an acoustic source with up 

to 200 watts of power in the 424  kHz range. The acoustic source should be side-looking 

with respect to the main vehicle axis and be adjustable in angle from fully horizontal to 

fully vertical downward. The sonar payload should have the capability to drive the acoustic 

source with a number of different waveforms that can be chosen on the fly. 

Data Acquisition Given the need for high fidelity processing of the sonar data, the sonar 

data acquisition should provide &channel simultaneous sampling with a precision of at 

least 16 bits and a maximum sampling rate of 100 kHz. In order to obviate the need for 

analog anti-aliasing filters, sigma-delta conversion will be used on all analog to digital (AID) 

converters. All acquired data samples should be saved to hard disk for offline processing. 

T ime  Synchronization The sonar payload should have the ability to synchronize itself 

to Coordinated Universal Time (UTC) with an accuracy of at least 1 microsecond while 

the AUV is on the surface. While submerged, the sonar time reference should drift no 

more than 1 microsecond per hour. The payload time reference system should be able to 

interface to the data acquisition system such that time tags can be generated by the time 



(a) An AUV with a single line array. (b) An AUV with a dual line array. 

Figure 5-2: This figure show the  Odyssey AUV in two configurations, one with a 16 element 
single line array cut for 15kHz and one with dual 8 element arrays cut for 7.5kHz. 

reference system in response to hardware triggers from the data acquisition system (for the 

purpose of time-tagging acquired data samples). 

6. Vehicle Communications The sonar payload should have the ability to communicate 

with the main vehicle computer via Ethernet. 

7. Integration as a Logical Sensor One of the key robotic techniques that will enable 

advanced, high-level vehicle control in a cooperative, multi-vehicle framework is the concept 

of the logical sensor. Under this concept, a sensor (the sonar payload in this case) will 

communicate with the main vehicle operating system to send meta-data and requests and 

to receive commands. Meta-data is high-level, processed data as opposed to raw data 

samples. For example, a piece of meta-data that might be sent from the sonar payload to 

the vehicle operating system is "target detected at coordinate (x,Y,z)'~ or a set of target 

track parameters. As can be seen, this technique uses a level of data abstraction that is 

one level higher than is normally seen from a sensor, e.g. converting a voltage signal into a 

pressure. Another hallmark of the logical sensor concept is that it allows the sensor to send 

requests to the vehicle operating system. For example, the sonar payload may send requests 

for specific vehicle movements as needed to optimize the target detection and classification 

based upon its processing of received data. The vehicle operating system determines how 

best to deal with requests from all logical sensors in accordance with mission parameters. 



The integration of the sonar payload as a logical sensor requires it to have full-duplex 

communications with the main vehicle operating system as well as the capability to run 

whatever algorithms are necessary for the real-time detection, classification, and tracking 

of targets. 

8. Ease of use as a research platform Because this system is intended to be used as a 

research platform maintained and operated by graduate students, ease of use and the ability 

to upgrade or change the system are of considerable importance. Every effort should be 

made to use commercial off-the-shelf hardware components and software that is well known 

and widely available to program the system. 

5.3 Sonar Implementat ion 
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Figure 5-3: This figure shows the functional block diagram of the logical sonar sensor. 

A functional block diagram of the sonar implementation is shown in 5-3. 
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A standard Bluefin Robotics Corporation aluminum pressure vessel was used to house the sonar 

electronics. This pressure vessel is cylindrical with hemispherical end caps. It can be seen in Fig. 

5-4 resting in a standard Odyssey-I11 payload section. This pressure vessel is capable of dissipating 

up to 150 watts of internally generated heat while maintaining a temperature below 45 degrees 

Celsius while underwater. The total power consumption of the payload is approximately 115 

watts while in operation with the acoustic source transmitting three to five pings per second. The 

only connection between the sonar payload and the main vehicle consists of a 28-volt (nominal) 

power connection and a 10 Mbps Ethernet connection. Note the acoustic source mounted on a 

mechanism that allows it to be rotated between fully horizontal and fully vertical. 

Figure 5-4: This figure shows the sonar payload in the Odyssey-I11 AUV payload section. 

5.3.2 Receiving Array Integration 

The sonar payload was configured to operate with both a 16-element single line array and 16- 

element dual line array. Fig. 5-2(a) shows the Odyssey vehicle with the single line array while 

Fig. 5-2(b) shows it with the dual line array. 



Analog Processing Section 

A high-performance preamplifier with low noise characteristics is vital to obtaining quality sonar 

data. The preamplifier used in the MIT sonar system was designed and built at the Woods Hole 

Oceanographic Institution. It is needed to boost the signal levels from the hydrophones up to the 

4volt p-p needed by the digitizers in the signal processing section. It is capable of three levels 

of gain, 0 dB, +20 dB, and +40 dB, selectable on the fly from the signal processing section via 

a control line. The preamplifier was designed to have a relatively flat pass band in the 4-24 kHz 

region. 

5.3.4 Host Computer Architecture 

The major issue driving the architecture of the host computer platform is that of having enough 

bandwidth on the host computer's data bus to successfully stream raw data samples to the hard 

disk from the data acquisition system. Sampling 16 channels at 100 kHz using 16-bit samples 

produces a data rate of 3.2 megabytes per second. The two computer architectures that were 

considered were the PC-104 and the Peripheral Component Interface (PCI) bus architectures. 

The advantages of the PC-104 architecture are in its compact size and low power consumption. 

However, one major flaw is its 16-bit data bus as opposed to the 32-bit bus of the PC1 archi- 

tecture. It was felt that the PC-104 data bus would be only marginally capable of performing 

the continuous data transfer without even taking into account use of the bus by other peripheral 

cards. A lack of available off-the-shelf, high-performance, 16-channel signal processing peripheral 

cards was also a factor. 

Taking those factors into consideration, the PC1 architecture was chosen for the sonar host 

computer. In order to minimize space requirements in the pressure vessel, a passive backplane 

construction was chosen utilizing a single-board computer. A single board computer is a complete 

computer system on a PCI-compatible board. The singleboard computer card is inserted into the 

passive backplane PC1 bus thereby giving other peripheral cards access to the CPU. The board 

chosen for this implementation was based on a 266 MHz Pentium processor with 128 megabytes 

of main memory, Since this board did not have an integrated network card, a stand-alone network 

card was used in one of the free PC1 slots. 

Another significant decision for the host computer architecture is the choice of operating 

system. Both Linux and Microsoft Windows were considered. In this case, Linux was chosen for 



its cost (free), ease of programming (most graduate students are familiar with programming in 

Linux but not in Windows), and its speed. One drawback to  the choice of Linux is the lack of 

availability of commercial device drivers for many peripheral cards of interest. 

5.3.5 Data Acquisition Subsystem 

The data acquisition subsystem is the most critical part of the sonar. High quality, low noise 

data is essential for detecting and classifying targets in the ocean environment, especially when 

the data analysis must be done in real-time without the benefit of powerful computers and 

hours of offline processing. The acquisition system chosen for the sonar payload is based on the 

Heron modular digital signal processing (DSP) system manufactured by Hunt Engineering. This 

DSP system is specifically designed for demanding, real-time applications. It utilizes a modular, 

extensible hardware architecture that accommodates multiple TMS320C6000 DSP processors, 

multiple Virtex-I1 floating point gate arrays (FPGAs), and fully integrated ultra-fast AID, D/A 

and Digital 110 interfaces. For this system, the Heron HEPC8 Module Carrier Board was chosen. 

This PC1 form factor module carrier board supports up to four Heron modules which can be 

multiple 

(a) A sphere insonified at 3 kHz (b) A cylinder insonified at 5 kHz. 

Figure 5-5: This figure shows the Heron-4 DSP board and the rubidium oscillator used in 
the sonar payload. 

combinations of DSP, FPGA, AID, D/A, or I/O modules. The HEPC8 provides 32-bit first- 

in, first-out (FIFO) buffers between each module slot and the other modules slots on the board 



for data transfer between Heron modules. One FIFO on the board is also connected to the 

board PC1 interface for data transfer between a Heron DSP module and the host computer. 

The HEPC8 is shown in Fig. 5-5(a). The HEPC8 in the sonar payload contained four Heron 

modules; one Heron4-C6701 floating point DSP, one HEGD5 D/A converter, and two HEGD- 

12 AID converters. A functional block diagram of the data acquisition subsystem utilizing the 

Heron modular system is shown in Fig. 5-6. The DSP in this system has a number of roles. 

First, it waits for commands from the host computer (sent over the PC1 bus) to begin sampling. 

Second, it outputs the transmit waveform to the D/A converter module and triggers the power 

amplifier via an output control line. Third, it sends a TTL pulse trigger to the timing subsystem 

to generate a time tag via another control line. Fourth, it collects incoming data samples from 

the two A/D converters and transfers them to the host computer over the PC1 bus. The DSP in 

this system was not used for signal processing but may be in future revisions. The Heron4-C6701 

DSP module contains a 167 MHz Texas Instruments TMS320C6201 floating point DSP capable 

of 1 gigaflop of performance. The DSP module also provides numerous digital input and outputs 

that can be used for control of or communication with other system components. 

Power Amp Ctrl 

-- 

32-bi t FIFO 

Figure 5-6: This figure shows the sonar payload in the Odyssey-111 AUV payload section. 

The HEGD5 is a four-channel, 16-bit D/A converter that is used to receive a digitized wave- 

form from the DSP via a 32-bit FIFO and to output an analog signal to the power amplifier for the 

acoustic source. The sampling rate of the HEGD5 is 230 kHz. The HEGD12 is an eight-channel, 

16-bit A/D converter that is used to digitize the input waveform received from the preamplifier. 

The HEGD12 provides simultaneous sampling on all eight channels and utilizes sigma-delta con- 

version on all channels. The sigma-delta conversion technique involves over-sampling the input 



waveform by a factor of eight times, digitally filtering the over-sampled data, and then down- 

sampling the resulting data by a factor of eight. This technique eliminates the need for analog 

anti-aliasing filters. An onboard crystal oscillator provides the sample clock for the HEGD12. 

The sample clocks of the two HEGD12 modules are tied together in order to provide 16-channel 

simuitaneous sampling. Digitized samples are pushed into a 32-bit FIFO where they are read by 

the DSP. 

5.3.6 Time Reference Subsystem 

The time reference subsystem is the key to being able to use multi-static sonar techniques for 

detection and classification due to the need for accurate travel times between waveform trans- 

mission by the acoustic source and reception of the scattered waveform by each of the receiving 

arrays on multiple vehicles. In order to accomplish this, the sonar payloads on each vehicle must 

be synchronized in time. This synchronization must be maintained for the duration of the mis- 

sion. The solution to this problem is to synchronize each vehicle on the surface via GPS and 

to maintain this synchronization with an internal oscillator while the vehicles are underwater 

and unable to amess the GPS satellites. This was accomplished in the MIT sonar payload by 

using a digital clock card. This card, the Synclock-32 manufactured by JXI2 incorporated, has 

an onboard GPS receiver which can be used to synchronize the clock on the card to GPS time 

to within 500 nanoseconds of UTC. Once synchronized, however, all clocks will drift (either fast 

or slow) and the Synclock-32 will begin to drift once the GPS input is gone. The rate of drift 

will depend on the quality of the oscillator that is used to keep time on the clock. Unfortunately, 

standard crystal oscillators do not have the capability to meet the stringent drift requirement of 

1 microsecond per hour that is needed for this application. The solution to this problem is to use 

a rubidium oscillator to keep time. A rubidium oscillator is actually a small atomic clock. The 

rubidium oscillator chosen for the sonar payload is the RMO rubidium oscillator manufactured 

by Ternex in Switzerland. This oscillator has a drift specification of 700 nanoseconds per hour 

and consumes 10 watts of power. See Fig. 5-5(b) for a picture of the RMO. Time tags can be 

generated by the Synclock-32 upon reception of a digital control input from the DSP. Once the 

time is latched, the Synclock-32 generates a PC1 bus interrupt that is intercepted by a device 

driver that reads the time tag from the Synclock-32 and places it in a file. Since the payload 

on each vehicle can be synchronized within 500 nanoseconds of UTC, the maximum initial time 



error between the transmitting vehicle and each and receiving vehicle is 1 microsecond. 

5.3.7 Acoustic Source 

The acoustic source used in the payload is the acoustic source from the SB-24 sub-bottom profiler 

tow sled manufactured by EdgeTech. It has a frequency range of 4-24 kHz and a beam width of 

15-30 degrees depending on the transmit frequency. The power amplifier used to drive the source 

has a maximum output power of 200 watts. 

5.3.8 Software Architecture 

The software architecture of the sonar includes processes running on two different processors; 

the DSP in the data acquisition subsystem and the host computer. The software on the host 

computer is responsible for bi-directional communications with the main vehicle operating sys- 

tem, booting the DSP with an executable image, bi-directional communications with the process 

running on the DSP, transferring sample data from the DSP and saving it to the hard disk, and 

for running any data analysis algorithms such as detection and classification algorithms. A single 

multi-threaded process on the host computer accomplishes the first four of these tasks while the 

detection and classification algorithms are run simultaneously as individual processes. The main 

communications process is compiled with a library provided by the main vehicle operating system 

which makes communication with the operating system as simple as making a function call. An 

Application Programming Interface (API) provided by Hunt Engineering allows booting of the 

DSP with an executable image. Communications with the DSP is accomplished through a set of 

function calls provided by the API. All code on the host computer is written in C or C++ using 

the Linux compiler. The process running on the DSP is responsible for communicating with the 

host computer to send status or to read commands, reading samples from the A/D converters, 

transmitting the output waveform, triggering the time tag subsystem and for transferring sam- 

ple data to the host computer. All code development for the DSP was done using the Texas 

Instruments Code Composer Studio. Communications between the DSP and host processor was 

accomplished by compiling the DSP code with an API provided by Hunt Engineering. 



5.4 Experimental Results 

The sonar payload was tested in three different international experiments. The GOATS 2000 

experiment, conducted in conjunction with SACLANTCEN off of Elba Island Italy, tested only the 

time synchronization subsystem while the GOATS 2002 experiment, also held in conjunction with 

SACLANTCEN off the coast of Italy, tested the full sonar payload in a mono-static configuration 

with a single AUV. During the GOATS 2000 experiment, the time synchronization subsystem 

was successful in synchronizing the digital clock card to GPS time and in maintaining the time 

synchronization with the rubidium oscillator while the vehicle was underwater. The system 

was also successful in time-tagging sonar data collected by the AUV. During this experiment, 

the underwater targets were insonified by a tower-mounted acoustic source. The transmissions 

from the acoustic source were GPS time-tagged by the shore station that was controlling the 

transmissions. A major goal of the GOATS 2002 experiment was to test the complete sonar 

payload in an operational environment. This involved programming the AUV to conduct a sonar 

search of a patch of sea bottom where several buried and proud targets had been placed. A simple 

target detection algorithm, developed by several graduate students in the department, was run 

on the sonar host computer. This detection algorithm was fed a continuous stream of sonar data 

as the AUV conducted a search pattern in the area of interest. Detections were logged in a file for 

offline analysis. The online detection algorithm was successful in detecting a number of targets 

in real time. Fig. 5-7 shows the raw sonar data for one such online detection [60]. The sonar 

returns from the detected target can be seen inside the white box on the figure. Note the familiar 

hyperbolic shape of the target plot. This is exactly the pattern we expect to see from an AUV 

moving in a straight line past a point target. These extremely important results validate our sonar 

design and show that the data quality from the sonar is high enough to be used for real-time 

target detection. Although more extensive online target tracking and classification algorithms 

were not available at  the time of the GOATS 2002 experiment, extensive offline analysis of the 

sonar data continues to  show its superb quality and suitability. One of the challenges to online 

target detection is in trying to sort out spurious returns from those returns from actual point 

targets. 

The purpose of the GOATS 2004 experiment was the investigation of bi-static and multi- 

static MCM scenarios. Fig. 5-8 shows a spectrogram of a multi-static ping reception. This figure 

shows the spectrogram of the reception of two sonar pings transmitted in a multi-static MCM 



Figure 5-7: This figure shows an online detection of a fixed target with the sonar payload 
in MCM mode. Note the classic hyperbolic shape of the sonar returns over time. 

scenario. Two CHIRP signals are clearly seen, one increasing in frequency, the other decreasing. 

Each CHIRP signal was transmitted by a separate sensor platform. 

Fig. 5-9 and Fig. 5-10 show experimental results from the FAF '05 experiment where the 

sonar was run in a passive acquisition mode. In this mission, the AUV was run in a rectangular 

box with the source at a fixed location. The goal was to compute bearings to an acoustic source 

at a fixed location. Fig. 5-9 shows absolute target bearings computed both in real-time and 

then subsequently in post-processing after tuning parameters and modifying the beam tracking 

algorithm. This was done in order to increase performance and correct for an incorrect leftlright 

ambiguity decision for t > 500 s. Fig. 5-10 shows bearing lines originating from logged AUV 

navigation position data. This demonstrates consistency of bearing line triangulation with the 

logged GPS locations of the ship towing the source. 



Figure 5-8: A spectrogram of a multi-static ping reception. This figure shows the spectro- 
gram of the reception of two sonar pings transmitted in a multi-static MCM scenario. Two 
CHIRP signals are clearly seen, one increasing in frequency, the other decreasing. Each 
CHIRP signal was transmitted by a separate sensor platform. 



Figure 5-9: Absolute target bearings computed both in real-time and then subsequently in 
post-processing after tuning parameters and modifying the beam tracking algorithm. This 
was done in order to increase performance and correct for an incorrect leftlright ambiguity 
decision for t > 500 s. 



Figure 5-10: Bearing lines originating from logged AUV navigation position data. This 
demonstrates consistency of bearing line triangulation with the logged GPS locations of 
the ship towing the source. 



Chapter 6 

Example One: Adaptive Track and 

Classify 

6.1 Introduction 

We are motivated by the following scenario: two heterogeneous vehicles are in operation, the first 

is fitted with a passive, bearings-only towed sensor array and takes on the role of tracking other 

moving underwater objects of unknown trajectory and type. 

The second vehicle is fitted with a different sensor more appropriate for detecting acoustic 

signatures of underwater objects and takes on the role of classifying other underwater objects. 

The two vehicles work together to track and classify underwater objects by communicating track 

solution information from the tracking vehicle to the classify vehicle via acoustic modem. The 

latter vehicle uses the track information to close its position on the object of interest to the 

benefit of its classification sensors. Each vehicle optimizes its trajectory to balance their sensing 

responsibilities alongside mutual relative position responsibilities. 

In this chapter, we will first derive the mathematical basis for target tracking with a single 

mobile bearing sensor which will allow us to design the proper behaviors for the vehicle motion. 

Next, we will derive the target localization and tracking algorithms which reside on the intelligent 

sensor. Finally, we will present experimental validation of these concepts using three autonomous 

surface craft. 



, Classify 

Figure 6-1: Two heterogeneous unmanned marine vehicles are in operation together. The 
first tracks the position and trajectory of unknown underwater objects using a towed linear 
array, and communicates track solution information via acoustic modem to a second vehicle 
with different sensors more suitable for classifying underwater objects. 

6.2 Target Tracking with a Single Bearing Sensor 

In order to track a moving object from a set of discrete sensor observations, one must first decide 

on the kinematic model used to describe the object's motion. In this work, a constant-velocity 

model was chosen because it is one of the simplest to describe mathematically and because 

estimating the motion of a constant velocity target using a bearings-only sensor is a classical 

problem in target motion analysis. Also termed "passive localization" or "passive ranging" this 

problem arises, for example, when trying to estimate the motion of a submarine moving at 

constant velocity from another submarine observing the target using a linear towed array sensor. 

6.2.1 State Estimator Derivation 

In formulating this problem, we follow a classical analysis as given in [61]. Consider a Cartesian 

coordinate frame having an object with position [q[n] yt[n]]T and constant velocity [it ljtlT being 

tracked by a bearing sensor on a sensor platform with position [xp[n] jj,[n]lT moving in the same 

plane with measurement observations taken at  the discrete time intervals n = 0, I,.  . . , N , The 



state equations for the target motion can be written in discrete time as 

Y [nl = Y [Ol + ~ t t n  

Given (6.1) and (6.2) we define the state parameter vector 

All of the parameters in the state parameter vector are assumed to be statistically independent. 

The measurements are target bearings relative to the sensor platform given by 

where 

h[n, x] 4 tan- 1 Y t  In1 - YP 1.1 
st In1 - XP [nl 

and w[n] is the measurement noise assumed to be a Gaussian white noise sequence with vari- 

ance q. Our sensor makes a sequence of bearing measurements which we combine into a single 

measurement vector Z . 

Given our assumption of a constant velocity target, estimating the parameters in 6.3 from 

a sequence of observations will completely define the target motion. A number of different es- 

timation techniques can be used to estimate the state parameter vector. These include the use 

of extended Kalman filters (EKF) and maximum likelihood (nonlinear least squares) estimators. 

An advantage of using a recursive estimator such as the EKF is that only the current mea- 

surement is needed to form the estimate, allowing the estimator to run in constant time with 

respect to the number of observations made. A significant disadvantage of the EKF is that it 

is a suboptimal estimator based on the linear Kalman filter with a modification that linearizes 

the nonlinear measurement equation about the latest estimate. In general, the EKF works well 

if the initial estimates and measurement noise are not "too large", given a particular problem. 

The biggest advantage of the maximum likelihood estimator is that the estimates are optimal in 

a least squares sense. Disadvantages of the maximum likelihood estimator include the need to 

compute the minimum of the likelihood equation and the need to use the complete observation 



vector to compute each estimate. The latter disadvantage leads to increasing computational load 

as the number of observations increases. Because computational load is not an issue in either 

our simulations or in our experimental apparatus, we will use a maximum likelihood estimator 

to estimate the state parameter vector in order to form the optimal estimate. 

6.2.2 The Likelihood Function 

Given the Gaussian noise assumption for our measurement, we define the negative log-likelihood 

function as 
4 N 

The maximum likelihood estimate is then formed by 

5 = arg rnin A(x) 
x 

The state parameter vector which satisfies (6.7) is the maximum likelihood estimate. The mini- 

mization required to satisfy (6.7) can be accomplished using a number of numerical techniques 

including Newton-Raphson, quasi-Newton, and simplex methods. Newton-Raphson and quasi- 

Newton methods require knowledge of the first derivatives of (6.6) with respect to the state 

parameters. In the following work, The minimization required to satisfy (6.7) was accomplished 

using the Broyden-Fletcher-Goldfarb-S hanno algorithm, a quasi-Newton met hod The derivatives 

(with irrelevant const ants removed) of equation 6.6 are 

Any search method requires an initial starting 

(6.10) 

(6.11) 

point for the search. Ideally, the starting point 

should be carefully chosen to lie near enough to the actual solution in order to find the global 

minimum. In the following work, the minimization algorithm was initialized with a starting state 



parameter vector [x[O] y[O] xt &IT as follows: 

1. xt and yt were initialized to 1.0 m / s  

2. x[O] and y[O] are initialized by using an initial "range guess" along with the first bearing 

measurement to compute a starting point for the search. For each subsequent measurement, 

the state estimate from the previous measurement is used as the starting point for the 

search. For this work, the initial range guess value was 200 m. 

6.2.3 The Crarner-Rao Lower Bound 

The Cramer-Rao lower bound (CRLB) stipulates that the variance of our parameter estimates 

cannot be lower on average than a certain value determined by the shape of the likelihood function. 

The derivation and proof of the CRLB can be found in a number of textbooks on estimation theory 

including [61]. Formally, we say that 

where Iy(x) is known as the Fisher information matrix (FIM). The elements of the FIM are 

measures of the amount of "information" available about each parameter. Given our measurement 

vector Z and the Gaussian noise assumption, the diagonal elements of the FIM for this problem 

are 

The Cramer-Rao lower bound on the variance of each of our parameters is then found by 

inverting the FIM. By examining the elements of the FIM, several important issues can be noted. 

First, it is readily apparent that the number of observations N in our observation vector Z is 

a critical parameter determining the variance of our parameter estimates. Second, it is also 



apparent that the relative positions of the sensor and target over time also play a critical role as 

is explored in section 6.2.4. 

6.2.4 Parameter 0 bservability 

(a) Sensor with constant velocity (b) Sensor with acceleration 

Figure 6-2: Parameter observability based on sensor motion. In 6-2(a), both the sensor 
platform and the target have constant velocity while in 6-2(b), the sensor platform has 
acceleration with respect to the target motion. 

A well known constraint in tracking a constant-velocity target from a moving sensor platform 

is that, if the sensor platform also moves with constant velocity, the target motion parameters are 

unobservable. Therefore, the sensor platform must undergo an acceleration with respect to the 

target. A simple change of course can satisfy this condition. In 6-2(a), both the sensor platform 

and the target have constant velocity while in 6-2(b), the sensor platform has acceleration with 

respect to the target motion. As can be seen in the figures, the observations made with the sensor 

platform with constant velocity are parallel and , hence, redundant while the observations from 

the platform with acceleration are not. Redundant observations lead to an under-constrained 

system of equations when trying to solve for the target state parameters and produce a FIM 

which is not invertible. The degree to which the sensor motion improves the observability and, 

hence, the variance of the parameter estimates can be quantified by the condition number J of 

the FIM [61]. If J is too large, the FIM is ill-conditioned and the parameters are unobservable. 

Even if the FIM is invertible, the parameters may be marginally observable depending on the 



actual value of J. The vehicle behaviors described in Section 4.2 are designed with the goal of 

producing a well-conditioned FIM. 

6.2.5 Covariance of the Target Position Estimate 

In many tracking applications, it is very useful to know at  any time t ,  what the estimated position 

of the target is and what our confidence in that estimate is (in a statistical sense). From the 

state equations for the target motion (6.1) and (6.2), we can develop the state transition matrix 

Fp which, when multiplied by the state parameter vector it , will give us the estimated target 

position at any time t, as follows 

It is then a well known procedure to find the covariance matrix for a set of position estimates 

at any time tn > 0 from the parameter estimate covariance matrix and the state transition matrix 

as follows 

Cp(tn) = ~ p ( t n ) ~ ( t n ) ~ ~ ( t n ) ~  (6.18) 

where Cp(t,) is the covariance matrix for the state parameter estimates at time t,. It only re- 

mains then to determine the covariance matrix for the state parameter estimates. If the maximum 

likelihood estimator for this problem is efficient then the CRLB can be used as the covariance 

matrix for the state parameters. In [6l], Bar-Shalom's analysis shows that the maximum likeli- 

hood estimator is indeed efficient for this problem. Therefore, we can calculate the covariance of 

our target position estimates in (6.18) using the CRLB (C = I~(X)-'). 

From this covariance matrix (and the knowledge that the variance of our position estimate 

at any time t, is a multivariate Gaussian distribution over x and y given our Gaussian noise 

assumptions on the parameter estimates), we can then plot the confidence region for the target 

position estimate at time t ,  as the ellipse 

where gp  is the probability associated with the required coilfideilce region (e.g. 90% or 0.9). 



6.3 Experimental Setup 

Experimental validation of the architecture and algorithms for autonomous bearings-only track- 

ing, was conducted using two autonomous kayaks as the tracking and classify vehicles, and a third 

kayak as a moving object to be tracked and classified. The kayaks are proxies for autonomous 

underwater vehicles (AUV) used in upcoming follow-on experiments. 

6.3.1 Simplifying Assumptions 

Three simplifying assumptions were made. First, as a proxy for the towed array bearings-only 

sensor, the GPS position of the sensed vehicle was communicated over an 802.11b wireless con- 

nection to the sensing vehicle. The sensor vehicles converted (diminished) this information into 

bearings-only sensor data using a simulator which provided bearing data to the MOOS database 

just as the intelligent sensor currently in use on the AUVs would do. Although a bearing simula- 

tor of this nature does not have the same characteristics as a real acoustic array, the performance 

is acceptable within the ranges used in this experiment. Fig 6-3 shows the uncertainty of the 

simulated bearing sensor as a function of the position uncertainty of the target vehicle and range. 

The second simplification was the use of the 802.11b wireless connection as a proxy for commu- 

nications via acoustic modem between the sensor vehicles. Given that acoustic communications 

is much slower than the wireless system used in this experiment, the simplification allowed the 

compression of the experiment in time in order to fit within the allowed physical boundaries of 

the test range. 

6.3.2 The Marine Vehicle Platforms 

The autonomous surface crafts used in this experiment are based on a kayak platform (Fig. 6-4). 

Each is equipped with a Garmin 18 GPS unit providing position and trajectory updates at 1 

Hz. The vehicles are also equipped with a compass but the GPS provides more accurate heading 

information, and is preferred, at speeds greater than 0.2 m/s. Each vehicle is powered by 5 

lead-acid batteries and a Minn Kota motor providing both propulsion and steerage. The vehicles 

have a top speed of roughly 2.5 meters per second. See [62] for more details on this platform. 



Figure 6-3: Bearing simulator uncertainty. This figure shows the variance of the bearing 
simulator used in the experiment as a function of target position variance and range. 

6.3.3 Scenario 

The experiment a1 scenario begins with the deployment of the sensor and classification vehicles 

into separate patrol orbits where they will remain until a target detection occurs. At some point, 

the target kayak will begin its motion into the target area. When it enters into the target area, 

it will begin broadcasting its GPS location to the sensor vehicle whose sensor simulator will 

convert the position information into a target bearing. After clearing the left/right ambiguity 

on the simulated array, the sensor vehicle will begin tracking the target and broadcasting the 

target track information to the classification vehicle. While the sensor vehicle continues to track 

the target, the classification vehicle will simulate a classification run by closing range with the 

target estimate. When the classification vehicle closes to within a predetermined range from the 

target estimate, it will return to its patrol orbit. After a predetermined amount of tracking time, 

tracking will be declared over and the sensor vehicle will return to its patrol orbit to await another 

target. The target vehicle will return to its starting location. 

6.3.4 Behavior Configurations 

The three vehicles were configured with the following behaviors and preconditions. A condition is 

a "vaxiable=value" pair in the MOOS Database. Details of the individual behaviors are given in 

section 4.2. A mission is started by broadcasting "deploy=true" to all vehicles and ended when 

the "return=true" message is broadcast. A broadcast is over 802.11b and changes a particular 



Figure 6-4: The kayak-based autonomous surface craft. 

MOOS variable in the database resident on the vehicle. The broadcast could also be made via 

acoustic modem. All vehicle helms were configured with the OpRegion behavior as a safety 

measure. This behavior is active upon mission startup indicated by "deploy=true". 

The tracking vehicle helm was configured with an Orbit behavior which is active immediately 

upon mission startup indicated by "deploy=true". The Orbit behavior is conditioned on not re- 

ceiving bearing sensor data, i.e., "sensor-data=inactiveR. It was also configured with ArrayTurn, 

ArrayAngle, and CloseRange behaviors. These three behaviors are conditioned on the vehicle 

receiving bearings-only sensor data, indicated by "sensordata=active" in the MOOS Database. 

The classify vehicle helm was also configured with an Orbit behavior that activated at mission 

startup. Additionally, the helm on this vehicle was configured with a Classify behavior which 

went active when target track solution data was received from the tracking vehicle. The Classify 

behavior was configured to deactivate itself when the CPA to the target vehicle reached 30 meters. 

The target vehicle was configured to follow a simple set of waypoints, and was further config- 

ured to communicated its GPS position to the sensor vehicle. This communication only occurred 

when the target vehicle was within a certain specified region referred to  as the "Sensor" region 

(Fig. 6-5). Deployment of the target vehicle was done via human command over wireless link 

when the other two vehicles had been on-station for an arbitrary sufficient time. 



6.4 Experimental Results 

6.4.1 Mission 1507 

Fig. 6-5 shows the vehicle motion for an experimental track and classify mission with autonomous 

kayaks (see Fig. 6-4) with one tracking kayak, one classify kayak, and one target kayak. The 

objective of this mission is for the tracking vehicle to acquire and track the target vehicle while 

relaying target track solutions to the classifjr vehicle which then executes a simulated classification 

run. 

In (a) the track vehicle and classify vehicle are deployed and executing their Orbit behavior 

to  loiter in two separate regions. In (b) the target vehicle is deployed and has just entered the 

sensor region where it begins to transmit its position data to the track vehicle. The track vehicle 

has just activated its ArrayTurn behavior for determining which side of the sensor array the 

target is on. In (c) the track vehicle has just sufficiently resolved the left-right ambiguity and 

has begun transmitting track solutions to the classify vehicle. The classify vehicle has begun its 

CloseRange behavior to facilitate classification of the target. The track vehicle has activated its 

CloseRange and ArrayAngle behaviors. In (d) both the track and classify vehicle are dominated 

by CloseRange behaviors to the target. In (e), the classify vehicle has performed the classification 

of the target and both vehicles are returning a back to their loiter regions. In (f)  both vehicles 

are back on-station and awaiting any further unknown objects or vehicles to come through its 

sensor field. The target vehicle has returned to the dock. 

Fig. 6-6 depicts the target position estimates produced by the MOOS process pTracker 

overlaid onto the actual target track. It is readily seen in the figure that the initial estimates 

were poor due to a small value for N as discussed in section 6.2.4. As the number of observations 

increases, a convergence of the estimate near to the actual track can be seen. Of special note is 

the large increase in convergence labeled "Vehicle Turn" in the figure. This is the point at  which 

the sensor vehicle's CloseRange behavior became active and made a sharp course change between 

the positions shown in Fig. 5-8(c) and 5-8(d). Some increasing error can be seen in the estimates 

near the end of the experiment for two primary reasons. First, this highlights the difficulty in 

trying to use a single bearings-only sensor to track a target of nearly the same or faster speed. 

In this configuration, the target is ahead of and moving away from the sensor and it is difficult 

to position the sensor to produce a better FIM as discussed in section 6.2.4. Second, this error is 

due to a need to  further optimize the vehicle behavior parameters to produce a better FIM. 



Figure 6-12: In (a) the track vehicle and classify vehicle (both autonomous kayaks, see 
Fig. 6-4) are deployed and executing their Orbit behavior to loiter in two separate re- 
gions. In (b) the target vehicle is deployed and has just entered the sensor region where 
it begins to transmit its position data to the track vehicle. The track vehicle has just 
activated its ArrayTurn behavior for determining which side of the sensor array the target 
is on. In (c) the track vehicle has just sufficiently resolved the left-right ambiguity and has 
begun transmitting track solutions to the classify vehicle. The classify vehicle has begun 
its CloseRange behavior to facilitate classification of the target. The track vehicle has 
activated its CloseRange and ArrayAngle behaviors. In (d) both the track and classify 
vehicle are dominated by CloseRange behaviors to the target. In (e), the classify vehicle 
has performed the classification of the target and both vehicles are returning back to their 
loiter regions. In (f)  both vehicles are back on-station and awaiting any further unknown 
objects or vehicles to come through its sensor field. The target vehicle has returned to the 
dock. 
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Figure 6-6: Target track solution results. This figure depicts the target position estimates 
produced by the MOOS process pTracker overlaid onto the actual target track for mission 
1507. It is readily seen in the figure that the initial estimates were poor due to  a small value 
for N as discussed in section 6.2.4. As the number of observations increases, a convergence 
of the estimate near to the actual track can be seen. Of special note is the large increase 
in convergence labeled "Vehicle Turn" in the figure. This is the point at which the sensor 
vehicle's CloseRange behavior became active and made a sharp course change between the 
positions shown in Fig. 5-8(c) and 5-8(d). Some bias can be seen in the estimates near the 
end of the experiment due to a need to further optimize the vehicle behavior parameters 
to produce a better FIM as discussed in section 6.2.4 



Figure 6-7: Target localization error. This figure shows the error between the target 
position estimates and the actual target location as a function of mission run time for 
mission 1507. 
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Figure 6-8: Classification vehicle distance from target position estimate. This figure shows 
the distance between the position of the classification vehicle and the estimated target 
position as a function of mission run time for mission 1507. The classification vehicle 
steadily closes range with the target until it reaches its predetermined minimum turnaround 
distance. 
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Figure 6-9: Fisher information. This figure shows Fisher information value for state param- 
eters xo and XI for mission 1507. The Fisher information steadily increase as the number 
of observations increases and the vehicle closes range with the target. 

Figure 6-10: Fisher information. This figure shows Fisher information value for state 
parameters x2 and x3 for mission 1507. The Fisher information steadily increase as the 
number of observations increase and the vehicle closes range with the target. 



Figure 6-11: Condition number of the Fisher information matrix. This figure shows the 
condition number of the Fisher information matrix as a function of mission run time 
for mission 1507. The condition number of the FIM initially increases as the vehicle's 
CloseRange behavior dominates the vehicle motion. As the vehicle closes with the target, 
the ArrayAngle behavior becomes more dominant and the vehicle motion starts to reduce 
the condition number of the FIM. 



6.4.2 Mission 1444 

Fig. 6-12 shows the vehicle motion for an experimental track and classify mission with au- 

tonomous kayaks (see Fig. 6-4) with one tracking kayak, one classify kayak, and one target 

kayak. The objective of this mission is for the tracking vehicle to acquire and track the target 

vehicle while relaying target track solutions to the classify vehicle which then executes a simulated 

classification run. 

In (a) the track vehicle and classify vehicle (both autonomous kayaks, see Fig. 6-4) are de- 

ployed and executing their Orbit behavior to loiter in two separate regions. In (b) the target 

vehicle is deployed and has just entered the sensor region where it begins to transmit its posi- 

tion data to the track vehicle. The track vehicle has just activated its ArrayTurn behavior for 

determining which side of the sensor array the target is on. In (c) the track vehicle has just 

sufficiently resolved the left-right ambiguity and has begun transmitting track solutions to the 

classify vehicle. The classify vehicle has begun its CloseRange behavior to facilitate classification 

of the target. The track vehicle has activated its CloseRange and ArrayAngle behaviors. In (d) 

both the track and classify vehicle are dominated by CloseRange behaviors to  the target. In (e), 

the classify vehicle has performed the classification of the target and both vehicles are returning 

back to their loiter regions. In (f) both vehicles are back on-station and awaiting any further 

unknown objects or vehicles to come through its sensor field. The target vehicle has returned to 

the dock. 

Fig. 6-13 depicts the target position estimates produced by the MOOS process pTracker 

overlaid onto the actual target track. It is readily seen in the figure that the initial estimates 

were poor due to a small value for N as discussed in section 6.2.4. As the number of observations 

increases, a convergence of the estimate near to the actual track can be seen. Some bias can be 

seen in the estimates near the end of the experiment due to a need to further optimize the vehicle 

behavior parameters to produce a better FIM as discussed in section 6.2.4. 



Figure 6-12: In (a) the track vehicle and classify vehicle (both autonomous kayaks, see 
Fig. 6-4) are deployed and executing their Orbit behavior to loiter in two separate re- 
gions. In (b) the target vehicle is deployed and has just entered the sensor region where 
it begins to transmit its position data to the track vehicle. The track vehicle has just 
activated its ArrayTurn behavior for determining which side of the sensor array the target 
is on. In (c) the track vehicle has just sufficiently resolved the left-right ambiguity and has 
begun transmitting track solutions to the classify vehicle. The classify vehicle has begun 
its CloseRange behavior to facilitate classification of the target. The track vehicle has 
activated its CloseRange and ArrayAngle behaviors. In (d) both the track and classify 
vehicle are dominated by CloseRange behaviors to the target. In (e), the classify vehicle 
has performed the classification of the target and both vehicles are returning back to their 
loiter regions. In (f)  both vehicles are back on-station and awaiting any further unknown 
objects or vehicles to come through its sensor field. The target vehicle has returned to the 
dock. 
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Figure 6-13: Target track solution results. This figure depicts the target position estimates 
produced by the MOOS process pTracker overlaid onto the actual target track for mission 
1444. It is readily seen in the figure that the initial estimates were poor due to a small 
value for N as discussed in section 6.2.4. As the number of observations increases, a 
convergence of the estimate near to the actual track can be seen. Some bias can be seen in 
the estimates near the end of the experiment due to a need to further optimize the vehicle 
behavior parameters to produce a better FIM as discussed in section 6.2.4 



Figure 6-14: Target localization error. This figure shows the error between the target 
position estimates and the actual target location as a function of mission run time for 
mission 1444. 
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Figure 6- 15: Classification vehicle distance from target position estimate. 
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This figure 
shows the distance between the position of the classification vehicle and the estimated 
target position as a function of mission run time for mission 1444. The classification 
vehicle steadily closes range with the target until it reaches its predetermined minimum 
turnaround distance. 



Figure 6-16: Fisher information. This figure shows Fisher information value for state 
parameters xo and XI for mission 1444. The Fisher information steadily increase as the 
number of observations increases and the vehicle closes range with the target. 

Figure 6-17: Fisher information. This figure shows Fisher information value for state 
parameters x2 and x3 for mission 1444. The Fisher information steadily increase as the 
number of observations increases and the vehicle closes range with the target. 



Figure 6-18: Condition number of the Fisher information matrix. This figure shows the 
condition number of the Fisher information matrix as a function of mission run time 
for mission 1444. The condition number of the FIM initially increases as  the vehicle's 
CloseRange behavior dominates the vehicle motion. As the vehicle closes with the target, 
the ArrayAngle behavior becomes more dominant and the vehicle motion starts to reduce 
the condition number of the FIM. 



6.4.3 Mission 1422 

Fig. 6-19 shows the vehicle motion for an experimental track and classify mission with au- 

tonomous kayaks (see Fig. 6-4) with one tracking kayak, one classify kayak, and one target 

kayak. The objective of this mission is for the tracking vehicle to acquire and track the target 

vehicle while relaying target track solutions to the classify vehicle which then executes a simulated 

classification run. 

In (a) the track vehicle and classify vehicle (both autonomous kayaks, see Fig. 6-4) are de- 

ployed and executing their Orbit behavior to loiter in two separate regions. In (b) the target 

vehicle is deployed and has just entered the sensor region where it begins to transmit its posi- 

tion data to the track vehicle. The track vehicle has just activated its ArrayTurn behavior for 

determining which side of the sensor array the target is on. In (c) the track vehicle has just 

sufficiently resolved the left-right ambiguity and has begun transmitting track solutions to the 

classify vehicle. The classify vehicle has begun its CloseRange behavior to facilitate classification 

of the target. The track vehicle has activated its CloseRange and ArrayAngle behaviors. In (d) 

both the track and classify vehicle are dominated by CloseRange behaviors to the target. In (e), 

the classie vehicle has performed the classification of the target and both vehicles are returning 

back to their loiter regions. In (f) both vehicles are back on-station and awaiting any further 

unknown objects or vehicles to come through its sensor field. The target vehicle has returned to 

the dock. 

Fig. 6-20 depicts the target position estimates produced by the MOOS process pTracker 

overlaid onto the actual target track. It is readily seen in the figure that the initial estimates 

were poor due to a small value for N as discussed in section 6.2.4. As the number of observations 

increases, a convergence of the estimate near to the actual track can be seen. Of special note is 

the large increase in convergence labeled "Vehicle Turn" in the figure. This is the point at which 

the sensor vehicle's CloseRange behavior became active and made a sharp course change between 

the positions shown in Fig. 4(c) and 4(d). Some bias can be seen in the estimates near the end 

of the experiment due to a need to further optimize the vehicle behavior parameters to produce 

a better FIM as discussed in section 6.2.4. 



Figure 6-19: In (a) the track vehicle and classify vehicle (both autonomous kayaks, see 
Fig. 6-4) are deployed and executing their Orbit behavior to loiter in two separate re- 
gions. In (b) the target vehicle is deployed and has just entered the sensor region where 
it begins to transmit its position data to the track vehicle. The track vehicle has just 
activated its ArrayTurn behavior for determining which side of the sensor array the target 
is on. In (c) the track vehicle has just sufficiently resolved the left-right ambiguity and has 
begun transmitting track solutions to the classify vehicle. The classify vehicle has begun 
its CloseRange behavior to facilitate classification of the target. The track vehicle has 
activated its CloseRange and ArrayAngle behaviors. In (d) both the track and classify 
vehicle are dominated by CloseRange behaviors to the target. In (e), the classify vehicle 
has performed the classification of the target and both vehicles are returning back to their 
loiter regions. In (f) both vehicles are back on-station and awaiting any further unknown 
objects or vehicles to come through its sensor field. The target vehicle has returned to the 
dock. 
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Figure 6-20: Target track solution results. This figure depicts the target position estimates 
produced by the MOOS process pTracker overlaid onto the actual target track for mission 
1422. It is readily seen in the figure that the initial estimates were poor due to a small value 
for N as discussed in section 6.2.4. As the number of observations increases, a convergence 
of the estimate near to the actual track can be seen. Of special note is the large increase 
in convergence labeled "Vehicle Turn" in the figure. This is the point at which the sensor 
vehicle's CloseRange behavior became active and made a sharp course change between 
the positions shown in Fig. 5-22(c) and 5-22(d). Some bias can be seen 'in the estimates 
near the end of the experiment due to a need to further optimize the vehicle behavior 
parameters to produce a better FIM as discussed in section 6.2.4 



Figure 6-21: Target localization error. This figure shows the error between the target 
position estimates and the actual target location as a function of mission run time for 
mission 1422. 

Figure 6-22: Classification vehicle distance from target position estimate. This figure 
shows the distance between the position of the classification vehicle and the estimated 
target position as a function of mission run time for mission 1422. The classification 
vehicle steadily closes range with the target until it reaches its predetermined minimum 
turnaround distance. 



Figure 6-23: Fisher information. This figure shows Fisher information value for state 
parameters xo and XI for mission 1422. The Fisher information steadily increase as the 
number of observations increases and the vehicle closes range with the target. 

Figure 6-24: Fisher information. This figure shows Fisher information value for state 
parameters xz and x3 for mission 1422. The Fisher information steadily increase as the 
number of observations increases and the vehicle closes range with the target. 



Figure 6-25: Condition number of the Fisher information matrix. This figure shows the 
condition number of the Fisher information matrix as a function of mission run time 
for mission 1422. The condition number of the FIM initially increases as the vehicle's 
CloseRange behavior dominates the vehicle motion. As the vehicle closes with the target, 
the ArrayAngle behavior becomes more dominant and the vehicle motion starts to reduce 
the condition number of the FIM. 



Chapter 7 

Example Two: Adaptive Tracking 

with Multiple Sensors 

7.1 Introduction 

We are motivated by the following scenario (see Fig. 7-1: two networked sensor vehicles are 

in operation, both fitted with passive, towed, acoustic sensor arrays. Both vehicles will detect 

and cooperatively track moving targets of unknown trajectory and type. Both vehicles begin in 

Figure 7-1: Two unmanned marine vehicles are in operation together in a marine sensor 
network. Both vehicles use linear towed arrays to produce simultaneous bearing estimates 
to an acoustic target which are combined to form a target track estimate. The track 
estimate is used to maneuver both vehicles into a formation designed to  minimize the 
target track estimate uncertainty 

patrol mode in separate portions of the operating area in order to optimize their sensor coverage. 



The two vehicles work together to track underwater objects by communicating target bearing 

and track estimate information between themselves via acoustic modem. The vehicles will then 

position themselves with respect to the target in a track and trail formation designed to minimize 

the uncertainty in the target track estimate. 

In this chapter, we will follow a similar technical approach to that followed in Chapter 6 for 

target tracking with a single sensor platform. First we will derive the mathematical basis for 

target tracking with two distributed bearing sensors which will allow us to design the proper 

behaviors for vehicle motion. Next, we will derive the target localization and tracking algorithms 

which reside on the intelligent sensor. Finally, we will present experimental validation of these 

concepts using three autonomous surface craft. By comparing the tracking results obtained with 

two distributed sensor platforms with those obtained in Chapter 6 using a single sensor platform, 

it will be clear that spatially distributed sensors have the potential to offer significant advantages. 

7.2 Bearings-Only Target Tracking with Two Sensors 

In order to track a moving object from a set of discrete sensor observations, one must first decide 

on the kinematic model used to describe the object's motion. In this work, a constant-velocity 

model was chosen because it is one of the simplest to describe mathematically and because 

estimating the motion of a constant velocity target using a bearings-only sensor is a classical 

problem in target motion analysis. Also termed "passive localization" or "passive ranging" this 

problem arises, for example, when trying to estimate the motion of a submarine moving at 

constant velocity from another submarine observing the target using a linear towed array sensor. 

In typical passive ranging applications, however, the state parameters for the target track are 

estimated using a set of observations from a single moving sensor platform. With only one 

sensor, both temporal and spatial diversity in the sensor measurements are needed to estimate 

the target track. In this work, we will estimate the target track parameters using simultaneous 

measurements from two spatially distributed sensors from which an immediate solution of the 

target position can be formed. Successive position estimates will then be used to estimate the 

target's velocity components. 



7.2.1 2D Target Position Triangulation 

Triangulating the position of an object using passive angle measurements is common in a number 

of fields including optics. Most analysis, however, assume fixed sensors triangulating fixed or 

moving targets or moving sensors estimating the position of a fixed target [63]. In this work we 

now consider the position estimation for a moving target from a moving sensor platform. In this 

section, we will follow the analysis as developed in [63] for the 2D target position estimation and 

the subsequent error analysis. Given the coordinate frame shown in Fig. 7-2 with target location 

Figure 7-2: Coordinate frame for 2D multi-sensor tracking, 

(x, [n], yt [ n ] )  and sensor positions (xi [n], yi [ n ] )  for the discrete time interval n = 0,1, . . . , N, the 

relationship between the position of the ith sensor and its measured target bearing Bi at time n 

is given by 

tan Oi [n] = 
xt [n] - xi [n] 
Yt [nl - Yn bl 

The solution to (7.1) for the general case of I sensors can be written in matrix form as 

This system of nonlinear equations can be solved using general least-squares methods such as 

Gauss-Newton and Levenberg-Marquardt . For the problem under consideration in this work, we 

limit ourself to the case of two sensors for which the exact solution at  any time step n can be be 

written as 



A 5 2  tan91 - XI  tan82 + (yl - y2) tan61 tang2 xt = 
tanel - tan O2 

yltan81 - y2tan02+x2 - X I  
$ t =  

tan O1 - tan O2 

7.2.2 Variance of the Target Position Estimate 

One of the most important pieces of information needed to develop the proper behaviors for a 

sensor-adaptive system is the relationship between the target motion and the variance of the 

parameter estimates for the process under observation. F'rom (7.3) and (7.4) it is apparent that 

the uncertainty in the target position estimates will be influenced by three factors: 

1. The uncertainty of the sensor positions (xi [n] , Pi [n] ) 

2. The uncertainty of the bearing measurements Oi[n] 

3. The positions of the sensors with respect to the target 

The sensor position uncertainties we model as Gaussian distributions with variance oh, equal 

and uncorrelated in both the x and y directions. The bearing measurement uncertainties we also 

model as Gaussian distributions with variance o i  equal and independent of sensor platform. The 

usual method for finding the variances of (7.3) and (7.4) would be to take the expectation 

Given the complexity of the functional forms for (7.3) and (7.4) however, no closed form 

solution for (7.5) can be calculated. In this case, one can derive the error propagation equations 

by performing Taylor series expansions of (7.3) and (7.4) as given in detail for this application 

in [63]. Using the above assumptions with regards to the uncertainties for sensor position and 

bearing measurements, a first-order approximation to the target position uncertainties can be 

given as 

o:, = clo;, + c208 (7.6) 



where Cl, C2, C3, and C4 are coefficients given as 

The derivatives needed to calculate (7.8) through (7.11) are derived in [63) and are also listed 

in Appendix A. Coefficients C1 and C3 measure the contribution of the sensor position error to 

the target location error while coefficients C2 and C4 measure the contribution of the bearing 

measurement error to the target location error. Coefficients C1, C2, C3, and C4 are plotted in 

Fig (7-3) through (7-7). Fig. (7-5) is a plot of coefficient C2 with a sensor to target range of 

20 meters versus the range of 10 meters used in Fig. (7-4). From an analysis of these plots, the 

following observations can be made with regard to the effect of sensor platform motion on the 

variance of the target position estimates: 

1. The largest influence on a:, and sit is the sensor separation angle (el - 02) with minimum 

variance at a separation angle of 90 degrees rising to infinity at separation angles of 0 

degrees and 180 degrees. 

2. The influence of the bearing measurement error rises linearly with the sensor to target 

range. The bearing measurement error will also rise with the sensor to target range due to 

the reduction in the received signal to noise ratio when using a real acoustic array. 

3. The 90 degree rotation between the plots of the coefficients for the variances of li.t and fit 

indicate that uncertainty in one spatial direction can be minimized with a corresponding 

increase in uncertainty in the other spatial direction. 

These observations will be used in Section 4.2 to develop the autonomous vehicle behaviors de- 

signed to cooperatively track a moving target with two sensor platforms with a goal of minimizing 

the target localization errors subject to other constraints on the platform motion. 



Figure 7-3: Coefficient C1. This plot shows shows coefficient C1 in (7.8) as a function of 
O1 and (01 - 02). It is clearly seen that Cl is minimized for (01 - 62) = 90 degrees. 

Figure 7-4: Coefficient C2 (lorn). This plot shows shows coefficient C2 in (7.9) as a function 
of O1 and (81 - 02) for a sensor to target range of 10 meters. It is clearly seen that C2 is 
minimized for (81 - 82) = 90 degrees. 



Figure 7-5: Coefficient C2 (20m).  This plot shows shows coefficient C2 in (7.9) as a function 
of O1 and (01 - 02)  for a sensor to target range of 20 meters. By comparison with Fig. 7-4, 
it is clearly seen that C2 is linearly dependent on the sensor to target range. 

Figure 7-6: Coefficient C3 (10m).  This plot shows shows coefficient C3 in (7.10) as a 
function of O1 and (01 - 82) for a sensor to target range of 10 meters. It is clearly seen that 
C3 is minimized for (81 - 132) = 90 degrees. 



Figure 7-7: Coefficient C4 (lorn). This plot shows shows coefficient C4 in (7.11) as a 
function of O1 and (4 - 192) for a sensor to  target range of 10 meters. It is clearly seen that 
C4 is minimized for (01 - 02) = 90 degrees. 

7.2.3 Target Velocity Component Estimation 

Having derived the necessary analysis to be able to estimate the instantaneous position of a target 

from two simultaneous bearing measurements, we would like to filter these noisy measurements as 

well as estimate the target's velocity components from successive position estimates. A number 

of techniques are available to do this but the extended Kalman filter was chosen for its speed, 

with available CPU cycles being limited on small, autonomous platforms. Even though this is a 

non-optimal estimation technique, good performance was obtained as shown in section 7.3. We 

start by modeling the target motion with the discrete time state equation 

where xk is the state vector for the target motion given by 



and wk the process noise vector given as [qx 0 qy 0IT where qx and qy are independent and 

equally distributed, zero mean, Gaussian random variables. Given the assumption of a constant 

velocity target, the state transition matrix F k  is computed as the Jacobian of (7.13). 

Q k  is the covariance matrix of the process noise wk given by 

resulting in 

where qq is the variance of the process noise. At each time step k ,  an observation zk of x k  is 

made according to 

where Hk is the Jacobian of the observation model 

and vk is the measurement noise vector given as r[l 1IT with r a zero mean normally distributed 

random variable. In this application, zk corresponds to a pair of simultaneous bearing measure- 



ments zk = [zl z2]: and the resulting matrix H k  is 

where di is the squared distance from sensor i to the target position estimate given by (yt - 

yi)2 + (xt - We consider the measurement noise of the bearing measurements from each 

sensor platform to be equal and independent of platform, therefore the covariance matrix of the 

measurement noise v k  is given as 
r 1 

where TT is the variance of our bearing measurements. Given these definitions of our estimation 

model, our estimation proceeds in classical fashion in two steps. In the first step, we calculate 

the predicted state x k l k - 1  and the predicted state covariance Pklk- l  for the current time step is 

given the information from the previous time step k - 1 as follows: 

In the second step we refine this prediction using our observations. We proceed by first calculating 

the measurement residual yk and the covariance residual Sk as 

The Kalman gain is then computed as 

The Kalman gain is then used with the measurement residual to update the current state estimate 

xklk and the state covariance matrix Pklk  as follows 



Scenario 

The experimental scenario begins with the deployment of the two sensor vehicles into separate 

patrol orbits where they will remain until a target detection occurs. At some point, the target 

kayak will begin its motion into the target area. When it enters into the target area, it will begin 

broadcasting its GPS location to the sensor vehicles whose sensor simulators will convert the 

position information into target bearings. Vehicle two's bearing data will then be transmitted 

to vehicle one where it will be combined with vehicle one's bearing information to form the 

target track. The target track information will then be broadcast back to vehicle two and both 

vehicles will use the track information to position themselves with respect to the target using the 

formation described in Section 4.2.8. After a predetermined amount of tracking time, tracking 

will be declared over and the sensor vehicles will return to their patrol orbits to await another 

target. The target vehicle will return to its starting location. 

7.2.5 Behavior Configurations 

The sensor vehicles were configured with the following behaviors and preconditions. Details 

on the individual behaviors is given in section 4.2. A condition is a "variable=value" pair in 

the MOOS Database. A mission is started by broadcasting "deploy=trueV to a11 vehicles and 

ended when the "return=truen message is broadcast. A broadcast is over 802.11b and changes a 

particular MOOS variable in the database resident on the vehicle. The broadcast could also be 

made via acoustic modem. All vehicle helms were configured with the OpRegion behavior as a 

safety measure. This behavior is active upon mission startup indicated by "deploy=true" . 

The helms on the sensor vehicles were configured with Orbit behaviors which are active im- 

mediately upon mission startup indicated by "deploy=true". The Orbit behavior is conditioned 

on not receiving bearing sensor data, i.e., "sensor data=inactiveV . It was also configured with 

the ArrayTurn, ArrayAngle, and CloseRange behaviors described in Section 4.2. These three 

behaviors are conditioned on the vehicle receiving bearings-only sensor data, indicated by "sen- 



sor-data=activen in the MOOS Database. 

The target vehicle was configured to follow a simple set of waypoints. Deployment of the 

target vehicle was done via human command over wireless link when the other two vehicles had 

been on-station for an arbitrarily sufficient time. 

7.2.6 Kalman Filter Initialization 

Before the first measurement is processed, the st ate covariance matrix Po, the measurement noise 

variance rr and the process noise variance qq must be initialized. In all missions described in this 

work, Po, r r ,  and qq were initialized to the following values: 

7.3 Experimental Results 

7.3.1 Mission 1448 

Fig. 7-8 shows the vehicle motion for an experimental tracking mission with autonomous kayaks 

(see Fig. 6-4) with two tracking vehicles and one target vehicle. The objective of this mission is 

to execute the scenario described in Section 7.2.4 where two sensor vehicles cooperatively track 

a target vehicle moving with constant velocity. This mission took place in the Charles River 

test range on December lst,  2005. In (a) two tracking vehicles are deployed and executing their 

Orbit behaviors to patrol in two separate regions. Note that tracking vehicle two, on the right, 

is exhibiting signs of a rudder control problem. In (b) the target vehicle is deployed and has just 

entered the sensor region where it begins to transmit its position data to the tracking vehicles for 

use in the bearing simulators. The tracking vehicles have just activated their ArrayTurn behaviors 

for determining which side of the sensor array the target is on and the sensor vehicles have begun 



their turns. In (c) the tracking vehicles have just sufficiently resolved the left-right ambiguity and 

have begun executing their Formation behaviors using the target position estimate as a virtual 

leader. In (d) both the tracking vehicles have moved into formation behind the target to begin 

the track and trail configuration.. In (e), both sensor vehicles are still in formation trailing the 

target. In (f) tracking is complete and both vehicles are back on-station and awaiting any further 

contacts to enter their sensor fields. The target vehicle has returned to the dock. 

Fig. 7-9 depicts the target position estimates produced by the MOOS process pTracker 

overlaid onto the actual target track for the period in which the target vehicle was operating in a 

constant velocity scenario. As can be seen, excellent position estimates were obtained, especially 

compared with the tracking results obtained using a single sensor platform to track a constant 

velocity target as shown in [64]. The gaps in the estimates as seen in the figure were due to 

communications breaks when no bearing estimates from vehicle two were received by vehicle one. 

Fig. 7-10 shows the error in the target position estimate as a function of mission run time. As 

can be seen, even with the communications breaks, position estimation results were generally 

very good, with an error of approximately 2 meters once steady state was reached. 

Fig. 7-11 shows the angle between the two sensor vehicles as a function of mission run time. 

Given the other constraints on the vehicle control, the optimal formation angle was not fully 

obtained but the angle was well within acceptable limits as shown in Fig. 7-3 and 7-4. 

Fig. 7-12 and 7-13 show the sensor vehicle to target estimate ranges. Neither platform was 

able to fully maintain the programmed distance from the target position estimate although both 

vehicles were actually closer to the target position estimate at steady state than the programmed 

distance. 

Fig. 7-14 depicts the actual speed of the target versus the speed estimate produced by 

pTracker for mission 1448. As can be seen, the speed estimate is very good, generally within 

0.2 m/s of the actual speed of the target by mission time 900. The target speed was obtained 

from GPS. 

Fig. 7-15 depicts the actual heading of the target versus the heading estimate produced by 

pTracker for mission 1448. As can be seen, the heading estimate is also very good, generally 

within 5 to 10 degrees of the actual heading of the target. The target heading was obtained from 

GPS. 



Figure 7-8: This figure shows the vehicle motion for the two sensor vehicles and the target 
vehicle for Mission 1448. The vehicles are executing the scenario described in Section 7.2.4 
using three autonomous kayaks maneuvering within the Charles River test area. 



Figure 7-9: Target track solution results. This figure depicts the target position estimates 
produced by the MOOS process pTracker overlaid onto the actual target track for Mission 
1448 for the period in which the target vehicle was operating in a constant velocity scenario. 
As can be seen, excellent position estimates were obtained, especially compared with the 
tracking results obtained using a single sensor platform to track a constant velocity target 
as shown in [64]. The gaps in the estimates as seen in the figure were due to communications 
breaks when no bearing estimates from vehicle two were received by vehicle one. 



Figure 7-10: Target Track Error. This figure shows the target track error as a function of 
mission time for Mission 1448. As can be seen, even with the communications breaks, posi- 
tion estimation results were generally very good, with an error of approximately 2 meters 
once steady state was reached. 

Figure 7-11: Formation angle. This figure shows the formation angle between the two 
sensor platforms as a function of mission time for mission 1448. Given the other constraints 
on the vehicle control, the optimal formation angle was not fully obtained but the angle 
was well within acceptable limits as shown in Fig. 7-3 and 7-4. 



Figure 7-12: Target range for sensor platform one. This figure shows the range between 
sensor platform one and the target estimate as a function of mission run time for mission 
1448. 
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Figure 7-13: Target range for sensor platform two. This figure shows the range between 
sensor platform two and the target estimate as a function of mission run time for mission 
1448. 



Figure 7-14: Speed estimate error. This figure depicts the actual speed of the target 
versus the speed estimate produced by pTracker for mission 1448. As can be seen, the 
speed estimate is very good, generally within 0.2 mls of the actual speed of the target by 
mission time 900. The target speed was obtained from GPS. 

Figure 7-15: Heading estimate error. This figure depicts the actual heading of the target 
versus the heading estimate produced by pTracker for mission 1448. As can be seen, the 
heading estimate is very good, generally within 5 to 10 degrees of the actual heading of 
the target by mission time 900. The target heading was obtained from GPS. 



Mission 1144 

Fig. 7-16 shows the vehicle motion for an experimental tracking mission with autonomous kayaks 

(see Fig. 6-4) with two tracking vehicles and one target vehicle. The objective of this mission is 

to execute the scenario described in Section 7.2.4 where two sensor vehicles cooperatively track 

a target vehicle moving with constant velocity. This mission took place in the Charles River 

test range on December lst,  2005. In (a) two tracking vehicles are deployed and executing their 

Orbit behaviors to patrol in two separate regions. Note that tracking vehicle two, on the right, 

is exhibiting signs of a rudder control problem. In (b) the target vehicle is deployed and has just 

entered the sensor region where it begins to transmit its position data to the tracking vehicles for 

use in the bearing simulators. The tracking vehicles have just activated their ArrayTurn behaviors 

for determining which side of the sensor array the target is on and the sensor vehicles have begun 

their turns. In (c) the tracking vehicles have just sufficiently resolved the left-right ambiguity and 

have begun executing their Formation behaviors using the target position estimate as a virtual 

leader. In (d) both the tracking vehicles have moved into formation behind the target to begin 

the track and trail configuration.. In (e), the target vehicle has turned around before tracking 

is complete, violating the constant velocity assumption and confusing the sensor vehicles. In (f) 

tracking is complete and both vehicles are back on-station and awaiting any further contacts to 

enter their sensor fields. The target vehicle has returned to the dock. 

Fig. 7-17 depicts the target position estimates produced by the MOOS process pTracker 

overlaid onto the actual target track for the period in which the target vehicle was operating in a 

constant velocity scenario. As can be seen, excellent position estimates were obtained, especially 

compared with the tracking results obtained using a single sensor platform to track a constant 

velocity target as shown in [64]. The gaps in the estimates as seen in the figure were due to 

communications breaks when no bearing estimates from vehicle two were received by vehicle one. 

Fig. 7-18 shows the error in the target position estimate as a function of mission run time. As 

can be seen, even with the communications breaks, position estimation results were generally 

very good, with an error of approximately 2 meters once steady state was reached. 

Fig. 7-19 shows the angle between the two sensor vehicles as a function of mission run time. 

Given the other constraints on the vehicle control, the optimal formation angle was not fully 

obtained but the angle was well within acceptable limits as shown in Fig. 7-3 and 7-4. 

Fig. 7-20 and 7-21 show the sensor vehicle to target estimate ranges. Sensor vehicle one 



was able to obtain the programmed distance while sensor vehicle two was not, possibly due to 

problems with the rudder. 

Fig. 7-22 depicts the actual speed of the target versus the speed estimate produced by 

pTracker for mission 1448. As can be seen, the speed estimate is very good, generally within 

0.2 m/s of the actual speed of the target. The target speed was obtained from GPS. 

Fig. 7-23 depicts the actual heading of the target versus the heading estimate produced by 

pTracker for mission 1448. As can be seen, the heading estimate is also very good, generally 

within 5 degrees of the actual heading of the target. The target heading was obtained from GPS. 



Figure 7-16: This figure shows the vehicle motion for the two sensor vehicles and the target 
vehicle for Mission 1144. The vehicles are executing the scenario described in Section 7.2.4 
using three autonomous kayaks maneuvering within the Charles River test area. 
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Figure 7-17: Target track solution results. This figure depicts the target position estimates 
produced by the MOOS process pTracker overlaid onto the actual target track for Mission 
1144 for the period in which the target vehicle was operating in a constant velocity scenario. 
As can be seen, excellent position estimates were obtained, especially compared with the 
tracking results obtained using a single sensor platform to  track a constant velocity target 
as shown in [64]. The gaps in the estimates as seen in the figure were due to communications 
breaks when no bearing estimates from vehicle two were received by vehicle one. 



Figure 7-18: Target Track Error. This figure shows the target track error as a function of 
mission time for Mission 1144. As can be seen, even with the communications breaks, posi- 
tion estimation results were generally very good, with an error of approximately 2 meters 
once steady state was reached. 

Figure 7-19: Formation angle. This figure shows the formation angle between the two 
sensor platforms as a function of mission time for mission 1144. Given the other constraints 
on the vehicle control, the optimal formation angle was not fully obtained but the angle 
was well within acceptable limits as shown in Fig. 7-3 and 7-4. 
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Figure 7-20: Target range for sensor platform one. This figure shows the range between 
sensor platform one and the target estimate as a function of mission run time for Mission 
1144. 

Figure 7-21: 
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Target range for sensor platform two. This figure shows the range between 
sensor platform two and the target estimate as a function of mission run time for mission 
1144. 



Figure 7-22: Speed estimate error. This figure depicts the actual speed of the target versus 
the speed estimate produced by pTracker for mission 1144. As can be seen, the speed 
estimate is very good, generally within 0.2 m l s  of the actual speed of the target. The 
target speed was obtained from GPS. 

Figure 7-23: Heading estimate error. This figure depicts the actual heading of the target 
versus the heading estimate produced by pTracker for mission 1144. As can be seen, the 
heading estimate is very good, generally within 5 degrees of the actual heading of the 
target. The target heading was obtained from GPS. 



Mission 1121 

Fig. 7-24 shows the vehicle motion for an experimental tracking mission with autonomous kayaks 

(see Fig. 6-4) with two tracking vehicles and one target vehicle. The objective of this mission is 

to execute the scenario described in Section 7.2.4 where two sensor vehicles cooperatively track 

a target vehicle moving with constant velocity. This mission took place in the Charles River 

test range on December lst, 2005. In (a) two tracking vehicles are deployed and executing their 

Orbit behaviors to patrol in two separate regions. Note that tracking vehicle two, on the right, 

is exhibiting signs of a rudder control problem. In (b) the target vehicle is deployed and has just 

entered the sensor region where it begins to transmit its position data to the tracking vehicles for 

use in the bearing simulators. The tracking vehicles have just activated their ArrayTurn behaviors 

for determining which side of the sensor array the target is on and the sensor vehicles have begun 

their turns. In (c) the tracking vehicles have just sufficiently resolved the left-right ambiguity and 

have begun executing their Formation behaviors using the target position estimate as a virtual 

leader. In (d) both the tracking vehicles have moved into formation behind the target to begin 

the track and trail configuration.. In (e), both sensor vehicles are still in formation trailing the 

target. In (f) tracking is complete and both vehicles are back on-station and awaiting any further 

contacts to enter their sensor fields. The target vehicle has returned to the dock. 

Fig. 7-25 depicts the target position estimates produced by the MOOS process pTracker 

overlaid onto the actual target track for the period in which the target vehicle was operating in a 

constant velocity scenario. As can be seen, excellent position estimates were obtained, especially 

compared with the tracking results obtained using a single sensor platform to track a constant 

velocity target as shown in [64]. The gaps in the estimates as seen in the figure were due to 

communications breaks when no bearing estimates from vehicle two were received by vehicle one. 

Fig. 7-26 shows the error in the target position estimate as a function of mission run time. As 

can be seen, even with the communications breaks, position estimation results were generally 

very good, with an error of approximately 2 meters once steady state was reached. 

Fig. 7-27 shows the angle between the two sensor vehicles as a function of mission run time. 

Given the other constraints on the vehicle control, the optimal formation angle was not fully 

obtained but the angle was well within acceptable limits as shown in Fig. 7-3 and 7-4. 

Fig. 7-28 and 7-29 show the sensor vehicle to target estimate ranges. Both sensor vehicles 

were able to obtain the programmed distance from the target position estimate in steady state. 



Fig. 7-30 depicts the actual speed of the target versus the speed estimate produced by 

pTracker for mission 1448. As can be seen, the speed estimate is very good, generally within 

0.2 m / s  of the actual speed of the target. The target speed was obtained from GPS. 

Fig. 7-31 depicts the actual heading of the target versus the heading estimate produced by 

pTracker for mission 1448. As can be seen, the heading estimate is also very good, generally 

within 5 degrees of the actual heading of the target. The target heading was obtained from GPS. 



Figure 7-24: This figure shows the vehicle motion for the two sensor vehicles and the target 
vehicle for Mission 1121. The vehicles are executing the scenario described in Section 7.2.4 
using three autonomous kayaks maneuvering within the Charles River test area. 
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Figure 7-25: Target track solution results. This figure depicts the target position estimates 
produced by the MOOS process pTracker overlaid onto the actual target track for Mission 
1121 for the period in which the target vehicle was operating in a constant velocity scenario. 
As can be seen, excellent position estimates were obtained, especially compared with the 
tracking results obtained using a single sensor platform to track a constant velocity target 
as shown in [64]. The gaps in the estimates as seen in the figure were due to communications 
breaks when no bearing estimates from vehicle two were received by vehicle one. 
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Figure 7-26: Target Track Error. This figure shows the target track error as a function of 
mission time for Mission 1121. As can be seen, even with the communications breaks, posi- 
tion estimation results were generally very good, with an error of approximately 2 meters 
once steady state was reached. 

Figure 7-27: Formation angle. This figure shows the formation angle between the two 
sensor platforms as a function of mission time for mission 1121. Given the other constraints 
on the vehicle control, the optimal formation angle was not fully obtained but the angle 
was well within acceptable limits as shown in Fig. 7-3 and 7-4. 
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Figure 7-28: Target range for sensor platform one. This figure shows the range between 
sensor platform one and the target estimate as a function of mission run time for mission 
1121. 

Figure 7-29: Target range for sensor platform two. This figure shows the range between 
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Figure 7-30: Speed estimate error. This figure depicts the actual speed of the target versus 
the speed estimate produced by pTracker for mission 1121. As can be seen, the speed 
estimate is very good, generally within 0.2 mls of the actual speed of the target. The 
target speed was obtained from GPS. 

Figure 7-31: Heading estimate error. This figure depicts the actual heading of the target 
versus the heading estimate produced by pTracker for mission 1121. As can be seen, the 
heading estimate is very good, generally within 5 degrees of the actual heading of the 
target. The target heading was obtained from GPS. 



Chapter 8 

Summary and Conclusions 

8.1 Summary of Contributions 

This thesis makes a number of contributions toward an understanding of adaptive sampling in 

marine sensor networks. One of the significant contributions made is an innovative architecture 

for sensor-adaptive control of autonomous sensor platforms in marine sensor networks. This 

architecture consists of: 

One or more logical sensors that are designed to provide high-level environmental state 

data to a behavior-based control system on an autonomous sensor platform. These logi- 

cal sensors are designed to be application-specific and to hide the sensor implementation 

details from the control system. A major advantage of the logical sensor approach is that 

sensing algorithms can be modified without having to modify the vehicle control behaviors. 

For example, in the logical targeting sensor used in the two experimental examples, the 

target detection and/or tracking algorithms could be modified without changing any of the 

tracking behaviors. The logical sensor approach also allows multiple physical sensors on the 

same sensor platform or multiple distributed sensors to be integrated into a single sensor 

from the viewpoint of the control system. In the two-bearing tracking example in Chapter 

7 for example, the logical targeting sensor fused the data from two distributed sensors into 

a single target track. 

A behavior- based control system which utilizes objective functions for action selection. The 

use of objective functions in the behavior-based control system allows for compromise be- 



tween the needs of individual behaviors. This allows much more flexibility than in schemes 

that only pick the output of a single behavior (e.g. Brooks' subsumption architecture) and 

those that average the output of individual behaviors (e.g. motor schema). The computa- 

tional intensiveness of the multi-function optimization approach is greatly reduced by using 

the Interval Programming Met hod developed by Benjamin [3]. 

A hybrid multi-robot cooperation scheme utilizing the behavior-based control approach but 

with some of the behaviors designed to cooperate with other autonomous sensor platforms. 

This cooperation is achieved by the sharing of state data among the distributed sensor 

platforms. This approach keeps the reactive control ability of behavior-based schemes but 

does away with the explicit task negotiation common to typical "intentional cooperation" 

approaches to cooperative control. 

Another significant contribution was the development of a targeting sensor for the Odyssey- 

111 AUV used in the department to support a number of research programs investigating sensor- 

adaptive target localization and tracking with multiple, cooperating sensor platforms (described 

in detail in Chapter 5 ) .  This sensor was developed with the following major characteristics: 

Active or passive acoustic sampling utilizing the Odyssey-I11 acoustic nose array. 

a Integration with the sensor platform control system as a logical targeting sensor. 

Time synchronization with other sensor platforms with microsecond accuracy. 

This sensor has been used to support four major international experiments (GOATS 2002, GOATS 

2004, FAF 2005 and the upcoming Monterey Bay 2006 experiment), four Ph.D. theses includ- 

ing this report, and a number of papers [60] [65]. The algorithms and behaviors used in the 

experiments detailed in Chapters 6 and 7 were developed for this targeting sensor. 

The third significant contribution was the execution of two experimental examples illustrating 

the concepts developed in the thesis. The two examples illustrated the following: 

The relationship between the sensor platform motion and the uncertainty of the parameter 

estimates for target tracking with both one and two sensor platforms. 

The development of sensor platform control behaviors designed to reduce the uncertainty 

of the parameter estimates in both the one and two sensor tracking cases. 



The integration and operation of a logical targeting sensor with a behavior-based control 

system that utilizes an objective function approach to action selection. 

The effectiveness of the hybrid approach to multi-robot cooperation. Two sensor platforms 

were able to maintain relative formation with each other while cooperatively tracking a 

moving target. 

The effectiveness of a distributed, multi-sensor approach to the estimation of the parameters 

of a process. Although the single sensor platform was able to track a moving target in the 

experiment detailed in Chapter 6 ,  the distributed tracking platforms were able to converge 

to the target track much faster and were able to achieve a much lower estimate error. 

8.2 Conclusions 

While the architecture and methods for adaptive sampling in marine sensor networks described 

in this report were shown to have promise, there are some areas that need more attention: 

The proper weighting of the behaviors is a difficult task since the weights can be dynamic 

and change with the state of the environment. For example, in the single senor platform 

tracking experiment in Chapter 6, both the ArrayAngle and the CloseRange behaviors 

were active simultaneously. The goal was to have the weight of the ArrayAngle behavior 

increasingly dominate as the sensor platform got closer to the target. However, it was not 

clear what the optimal weighting should be as a function of range in order to optimize both 

the Fisher information and the parameter observability. This task is made more difficult 

by the fact that the behavior weightings may be different in various scenarios such as a 

fast target moving away or for slow targets. One solution to this issue would be to use a 

Monte Carlo simulator to be able to efficierltly test thousands of scenarios in a probabilistic 

manner. The simulator could be paired with some sort of search mechanism like a genetic 

algorithm to optimize the behavior weights. 

Accurate sensor models are critical to understanding how the variance of our parameter 

estimates varies with platform motion and therefore how to design appropriate behaviors to 

reduce this variance. In this report, extremely simple sensor models were used. However, to 

realistically model the platform behavior, more complex models are needed. For the beasing 



sensor for example, the probability of target detection and the measurement variance change 

as a function of target range. The measurement variance also changes with the angle of 

the array with respect to the target. It is not really possible to use more complex sensor 

models when utilizing the bearing simulator with the autonomous surface craft but more 

complex sensor models could easily be incorporated into a Monte Carlo simulator. 

8.3 Future Work 

The target tracking problem is an excellent problem to use to develop adaptive sampling methods 

for marine sensor networks. The problem is sufficiently difficult, relevant, and can benefit from 

the application of distributed sensors. In Fig. 8-l(a) is a depiction of the example experiment 

discussed in Chapter 7 where two sensor platforms track a moving target. Although it is shown 

that two sensors are much better at tracking a target than one sensor, it is possible that two 

distributed sensors may also have bad geometry with respect to the target. As you increase the 

number of sensors, it becomes more likely that any pair of sensors has good geometry as depicted 

in Fig. 8-l(b). This N-sensor approach brings up several difficult questions such as how do we 

fuse N bearings into a target track, and what is the optimal sensor placement for N sensors? The 

latter question is related to the so-called "paparazzi problem" formulated by Jenkin and Dudek 

in [66]. Solutions to these questions are a topic of current investigation. 

An even more difficult problem is that of attempting to track multiple targets with distributed 

sensors as depicted in Fig. 8-2. Even though target two is occluded by target one with respect 

to sensor one, target two is clearly seen by sensor two. The same is also true of target three 

which is occluded by target two with respect to sensor two but is clearly seen by sensor one. 

However, the use of distributed sensors introduces an addition problem in that "ghost" targets 

can appear as seen in Fig. 8-2 where no actual target exists [67]. This issue, along with the 

typical data association problems associated with multiple target tracking are very difficult but, 

a very significant advantage exist when using mobile sensor platforms in that we may be able to 

maneuver the sensor platforms in such a way as to be able to resolve some of the ghosting and 

data association problems. This is also an area of current investigation. 



(a) Tracking with two sensors (b) TYacking with N sensors. 

Figure 8-1: In (a), two sensors are able to track the target but may not always be able to 
maintain the most effective placement while in (b) it is seen that it is more likely that given 
pairs of sensors may always be able to have good geometry with respect to the target. 

Figure 8-2: This figure depicts the multiple target tracking scenario with multiple sensors. 
As can be seen in the figure, distributed sensors can solve the occlusion problem but there 
are still issues with "ghost" targets. 





Appendix A 

Supporting Equations 

The partial derivatives used in equations 7.6 and 7.7 to compute the estimated variances for the 

target state vector were derived in [63] and are given as: 
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Appendix B 

Behavior Code 

B. 1 ArrayTurn Behavior 

............................................................. 
* NAME: Don Eickstedt */ 
* FILE: BHV,ArrayTurn.h */ 
............................................................. 
#ifndef BHV-ARRAYTURN-HEADER 
#define BHV-ARRAYTURN-HEADER 

using namespace std; 

class IvPDomain; 
class BHV-ArrayTurn : public IvPBehavior ( 
public: 
BHV-ArrayTurn(1vPDomain); 
"BHV-ArrayTurno 0 ; 

IvPFunction* produce0F () ; 
bool setParam(std::string, std::string); 

protected: 

double course-fix; 

bool course-fixed; 

>; 
#endif 



B. 1.2 BHV 4rrayTurn.cpp 

............................................................. 
/* NAME: Don Eickstedt */ 
* FILE: BHV,ArrayTurn.cpp */ 
* DATE: July 03 2005 */ 
............................................................. 

using namespace std; 

BHV-ArrayTurn : : BHV-ArxayTurn ( IvPDomain gdomain) : 
~v~Behavior(gdomain) 

this->setParam("descriptorl', I' (d) bhv,lBTrackN) ; 
this->setParam("unifbox", "course=3") ; 
this->setParam("gridboxu , "course-9") ; 
course-f ixed = false ; 

inf o-vars . push-back ('INAVVHEADINGvl ) ; 
3 

boo1 BHV-ArrayTurn: : setParam(string param, string val )  
+€ 

IvPBehavior::setParamCommon(param, val); 

return true; 
3 



// Need to know the name of ownship to query position 
if(us,name == "") C 
postEMessage("error,BHV,ArrayTurn: ownship name not known."); 
return(0) ; 

boo1 okl; 

//get current course 
double osCourse = inf o-buf f er->dQuery(us-name, "NAV-HEADING" , &okl) ; 

if (!oki)( 
postEMessage ("error ,BHV-ArrayTurn: ownship data not available") ; 
return (0); 

1 

//check to see if behavior just activated - if so, save current course 
if ( ! course-f ixed) ( 

course,fix = osCourse; 
course-fixed = true; 

OF-Reflector *ofr-track = new OF-Reflector(&aof-track,i); 

delete (ofr-track) ; 

of ->setDomainName(O, "course") ; 



............................................................. 
* NAME: Don Eickstedt */ 
/* FILE: AOF-ArrayTurn.h */ 
* DATE: 23 July 05 */ 
............................................................. 
#ifndef AOF-ARRAYTURN-HEADER 
#define AOF-ARRAYTURN-HEADER 

class IvPDornain; 
class AOF-ArrayTurn: public AOF 

C 
public: 

public : 

double evalBox(const IvPBox*) const; // virtual defined 
double lrmetric(doub1e) const; 

protected: 

double leftabs,rightabs,hwidth,osCourse; 
double crsBase; 
double crsDelta; 

>; 
#endif 



............................................................. 
/* NAME: Don Eickstedt */ 
* FILE: AOF,ArrayTurn.cpp */ 
/* BORN: 23 July 05 */ 
/* */ 
* The methods in this class are responsible for */ 
/* producing the objective function for the ArrayTurn */ 
* behavior. */ 
............................................................. 

using namespace std; 

AOF-ArrayTurn : : AOF-ArrayTurn ( IvPDomain g-domain , double course-f ix , double course) 
i 
int crs-ix = g~dornain.getIndex("course"); 

assert (crs-ix ! = -1) ; 

universe = IvPBox(1) ; 
universe.setPTS(0, 0, g,domain.get-dpoints(crs,ix)-I); 

//the course fix is the course at the time the ArrayTurn behavior 
//became active 

//find the center of the left mode 
leftabs = course-fix-90.0; 
if (leftabs < 0.0) 
leftabs += 360.0; 

//find the center of the right mode 
rightabs = course-fix + 90.0; 
if (rightabs > 360.0) 



rightabs -= 360.0; 

//half the width of the range of courses to 
//consider centered around the desired course 
//this should be an input parameter - change 
double width = 20; 

hwidth = width; 
osCourse = course; 

double AOF~ArrayTurn::evalBox(const IvPBox *b) const 

double evalCRS = crsBase + ( (double) (b->pt (0,O)) * crs~elta) ; 
double mval; 

mval = (lrmetric(eva1CRS)); 

return mval; 

//---------------------------------------------------------------- 
// Procedure: metric 
// 
// This method is responsible for applying a metric to each possible 
// course we are evaluating. This produces a bi-modal function over 
// course which is weighted toward the current course. 
//---------------------------------------------------------------- 

double ADF~ArrayTurn::lrmetric(double evalCRS) const 
C 
double mval; 

double left-perr = fabs(eva1CRS - leftabs); 
if (left-perr > 180.0) 
left-perr = 360.0 - left-perr; 

double right-perr = fabs(eva1CRS - rightabs); 
if (right-perr > 180.0) 
right-perr = 360.0 - right-perr; 



double left-cerr = fabs(osCourse-leftabs); 
if (left-cerr > 180.0) 
left-cerr = 360.0 - left-cerr; 

double right-cerr = fabs(osCourse-rightabs); 
if (right-cerr > 180.0) 
right-cerr = 360.0 - right-cerr; 

if (left-cerr <= right-cerr) 

if (lef t-perr < right-perr) 
mval = (((200-left,perr)/2.0) + (90.0-left,cerr)/2.0); 

else 
mval = (200-right,perr)/2.0 ; 

> 
else 

C 
if (right-perr <= left-perr) 
mval = (((200-right-perr)/2.0) + (90.0 - right,cerr)/2.0); 

else 
mval ~(200-left-perr) /2.0; 

if ( (left-perr 
mval = 0.0; 

> hwidth) && (right-perr > hwidth)) 

return mval; 
3 



B.2 ArrayAngle Behavior 

............................................................. 
/* NAME: Don Eickstedt */ 
/* FILE: AOF-ArrayAng1e.h */ 
/* DATE: 23 July 05 */ 
............................................................. 

#ifndef AOF-ARRAYANGLE-HEADER 
#define AOF-ARRAYANGLE-HEADER 

class IvPDomain; 
class AOF-ArrayAagle: public AOF { 

public : 

double evalBox (const IvPBox*) const ; // virtual defined 
double Arraymetric(doub1e) const; 
bool setParam(const std::string&, double); 
bool initialize () ; 

protected: 

double oscourse; //ownship course 
double osX; 
double osY; 
double tx,ty,raydirec; 
double leftabs,rightabs,hwidth; 

double crsBase,spdBase,talBase; 
double crsDelta,tolDelta,spdDelta; 

1; 
#endif 



B.2.2 AOF ArrayAnglexpp 

............................................................. 
* NAME: Don Eickstedt */ 
/* FILE: AOF,ArrayAngle.cp */ 
/* BORN: 23 July 05 */ 
............................................................. 
#include Ciostream> 
#include <math. h> 
#include cassert.h> 
#include "AOF,ArrayAngle.hn 
#include AngleUt ils . h" 
#include " IvPDomain . h" 

using namespace std; 

AOF-ArrayAngle : : AOF-ArrayAngle (IvPDomain g-domain) 
< 
int crs-ix = g-domain.getIndex("course") ; 
int spd-ix = g-domain. get Index ( "speedt1 ) ; 

assert (crs-ix ! = -1) ; 
assert (spd-ix ! = -1) ; 

crsDelta = g-domain. get,ddelta(crs,ix) ; 
crsBase = g-domain. get-dlow (cxs,ix) ; 

spdDelta = g-domain.get,ddelta(spd,ix); 
spdBase = g-domain. get-dlow (spd-ix) ; 

universe = IvPBox (2) ; 
universe.setPTS(0, 0, g,domain.get,dpoints(crs,ix)-1); 
universe.setPTS(1, 0, g-domain.get,dpoints(spd-ix)-1); 

1 

// Procedure: evalBox 
// Purpose: Evaluates a given course 
// 

double AOF~ArrayAngle::evalBox(const IvPBox *b) const 

double evalCRS = crsBase + ( (double) (b->pt (0,O) ) * crsDelta) ; 



double mval; 

mval = (Arraymetric(eva1CRS)); 

return mval; 

// Procedure: ArrayMetric 
// 
// This method applies a metric to a course that is being evaluated. 
// It produces a bi-modal objective function over course with the 
// mode closest to the current course being favorably weighted. 

double AOF,ArrayAngle::Arraymetric(double evalCRS) const 
i 
double mval; 

double lef t-perr = f abs (evalCRS - lef tabs) ; 
if (lef t-perr > 180.0) 
left-perr = 360.0 - left-perr; 

double right-perr = f abs (evalCRS - rightabs) ; 
if (right-perr > 180.0) 
right-perr = 360.0 - right-perr; 

double left-cerr = fabs(osCourse-leftabs); 
if (left-cerr > 180.0) 
left-cerr = 360.0 - left-cerr; 

double right-cerr = fabs(osCourse-rightabs); 
if (right-cerr > 180.0) 
right-cerr = 360.0 - right-cerr; 

if (left-cerr <= right-cerr) 
C 
if (lef t-perr < right-perr) 
mval = ( ( (200-lef t-perr) /2.0) + (90.0-lef t-cerr) /2.0) ; 

else 
mval = (200-right-perr)/6.0; 

3 
else 

if (right-perr <= lef t-perr) 
mval = (((200-right-perr)/2.0) + (90.0 - right-cerr)/2.0); 



else 
mval =(200-left,perx)/6.0; 

3 

if ((left-perr > hwidth) && (right-perr > hwidth)) 
mval = 0.0; 

return mval; 

//This method sets all the internal parameters 
//This method is called from BHV-ArrayAng1e.c~~ 
boo1 AOF,ArrayAngle::setParam(const string& param, double param-val) 

hwidth = param-val; 
return(true) ; 

1 
else if (param == llosCourse") ( 
osCourse = param-val; 
return(true1; 

1 
else if (param == "osX") ( 
osX = param-val; 
return(txue) ; 

1 
else if (paxam == "osY1') ( 
osY = param-val ; 
return(true) ; 

3 
else if (param == "tx") ( 
tx = param-val; 
return(true) ; 

1 
else if (param == "ty") { 
ty = param-val; 
return(true) ; 

1 
else 
return(fa1se) ; 

I- 

//This method initializes the class 
//This method determines the center of the two 
//modes of the bi-modal objective function 
//given the position of the target and ownship 



boo1 AOF,ArrayAngle::initialize() 
C 

raydirec = 90.0-atan2(osY-ty,osX-tx)*18OO0/M-PI; 

leftabs = raydirec-90.0; 
if (leftabs < 0.0) 
leftabs += 360.0; 

rightabs = raydirec + 90.0; 
if (rightabs > 360.0) 
rightabs -= 360.0; 



............................................................. 
* NAME: Don Eickstedt */ 
/* FILE: BHV-ArrayAng1e.h */ 
............................................................. 

#ifndef BHV-ARRAYANGLE-HEADER 
#define BHV-ARRAYANGLE-HEADER 

#include 'I IvPBehavior . h" 

#define NO-TRACK 0 
#define LR-TRACK 1 
#define TRACKING 2 

using namespace std; 

class IvPDomain; 
class BHV-ArrayAngle : public IvPBehavior { 

public : 

double getRelevance(double,double,double,double~; 

protected: 

int decode (string) ; 

double desired-angle; 
double txdot,tydot,ty,tx,range-ma,range-min,heading,speed; 

int state,width,mnum; 



B.2.4 BHV ArrayAngle.cpp 

............................................................. 
/* NAME: Don Eickstedt */ 
/* FILE: BHV,ArrayAngle.cpp */ 
* DATE: July032005 */ 
............................................................. 

#include <string> 
#include <iostream> 
#include <math. h> 
#include I1BHV,ArrayAngle. h" 
#include "MBUt ils . h" 
#include "AOF,ArrayAngle.hn 
#include nOF,Reflector,hw 

using namespace std; 

BHV,ArrayAngle::BHV,ArrayAngle(IvPDomain gdomain) : 
IvPBehavior(gdomain) 

C 

thi~->setParam(~~descriptor~~, I' (d)bhv-IBTrack") ; 
this->setParam("unif box", "course=3") ; 
this->setParam("gridbox", 11course=9u) ; 

range-min = 0.0; 
range-max = 1000.0; 

info-vars.push-back("NAV-XI1); 
inf o-vars . push-back ( "NAV-Y ) ; 
inf o-vars . push-back ( "NAV-HEADING" ) ; 
inf o-vars . push-back ( "TRACK-STAT") ; 

1 

boo1 BHV,ArrayAngle::setParam(string param, string val) 

IvPBehavior : : setParamCommon (param, val) ; 

if (param == "width") C 
width = (int) atof(val.c,str()); 



if (param == "range-min") C 
range-min = atof (val . c-str 0) ; 
return(true) ; 

if (param == "range-max") C 
range-max = atof (val . c-str 0 ) ; 
return(true1; 

return true; 
E 

IvPFunction *BHV-ArrayAngle::produceOF() 
C 
messages. clear () ; 

// Need to know the name of ownship to query position 
if (us-name == "") { 
postEMessage ("error ,BHV,ArrayAngle : ownship name not known. ") ; 
return(0) ; 

3 

boo1 okl,ok2,ok3,ok4; 
//get current course 
double osCourse = inf o-buf f er->dQuery (us-name , "NAV-HEADING" , kokl) ; 
//get current x 
double osX = inf o-buf f er->dQuery (us-name , "NAV-X" , &ok2) ; 
//get current heading 
double osY = info-buffer->dQuery(us-name, "NAV-Y", &ok3); 
//get current tracking state 
string tStat e = inf o-buf f er->sQuery (us-name , "TRACK-STAT , &ok4) ; 

if(lok1 1 1  !ok2 1 1  !ok3 ll!ok4){ 
postEMessage ("error, BHV-ArrayAngle : ownship data not available") ; 
return (0); 

int new-state = decode(tState); 



double relevance = getRelsvance (osX, osY, tx, ty) ; 

if (relevance <= 0) 
return (0) ; 

AOF-ArrayAagle aof ,track (domain) ; 
aof ,track. ~etParam(~~widtb" ,width) ; 
aof~track.setParam(~tosCourse~l,osCourse); 
aof -track. setparam ( "osXtl , osX) ; 
aof-track. ~etParam(~osY" ,osY) ; 
aof ,track. ~etPara.m(~~tx", tx) ; 
aof-track. setParam("ey" ,ty) ; 

aof ,track. initialize () ; 

OF-Reflector *ofr,track = new OF-Reflector(&aof,track,l); 

of r-track->create,unif orm(unif ,box, grid-box) ; 

int BHV-ArrayAngle::decode(string status) 
< 
vector<string> svector; 
vectorCstring> svector2; 

// Parse the waypoint status string for "us" 
svector = parse,string(status, ' , '1 ; 
for (unsigned int i=O; i~svector . size () ; i++) C 
svector2 = parse-string(svector [il , '='I ; 

if (svector2. size() ! = 2) < 
postEMessage("error,BHV-CloseRange: Invalid waypoint string"); 
return(0) ; 



string left = strip-blank-ends (svector2 [O] ) ; 
string right = strip~blank~ends(svector2~1]); 
if (left == "state") state = atoi (right. c-str 0) ; 
if (left == "x") tx = atof (right. c-stro) ; 
if (left == "y') t Y = atof (right. c-str 0) ; 
if(1eft == "heading") heading = atof (right .c,str()) ; 
if (left == "speedn) speed = atof (right .c,str()) ; 
if (left == "mum9') m u m  = (intlatof (right .c,strO); 

1 

double BHV-ArrayAngle::getRelevance(double osX, double osY, 
double cnX, double cnY) 

C 
boo1 silent = true; 

double total-range = range-max-range-min; 

double dist = hypot((osX - cnX), (osY - my)); 

if (!silent) 
cout << "BHV-ArrayAngle: Current Distance ------ It << dist << endl; 

if (dist > range-max) 
return(0.1) ; 

if (dist < range-min) 
return(l.0) ; 

double val = 1.0-((dist - range-min) / total-range); 

if (val > 1.0) 
val = 1.0; 

if ( !silent) 
C O U ~  << "relevance = "<< val <<endl; 

//for now always weight as I 
return(1.0); 

1 



CloseRange Behavior 

............................................................. 
/* NAME: Don Eickstedt */ 
/* FILE: BHV,CloseRange.h */ 
............................................................. 

#ifndef BHV-CLOSERANGE-HEADER 
#define BHV-CLOSERANGE-HEADER 

using namespace std; 

class IvPDomain; 
class BHV-CloseRange : public IvPBehavior ( 

public : 

IvPFuaction* produceOF0; 
bool setParam(std: : string, std: : string) ; 

protected: 

int decodebtring) ; 
double getRelevance(double,double,double,double); 

double h e a d i n g , s p e e d , t y , t x J m n u m , r a n g e e m a x , r ~ g e ;  
int state,meas,min; 

bool range-set; 

h 
#endif 



............................................................. 
/* NAME: Don Eickstedt */ 
* FILE: BHV,CloseRange.cpp */ 
/* DATE: July 03 2005 */ 
............................................................. 

using namespace std; 

BHV,CloseRange::BHV,CloseRange(IvPDomain gdomain) : 
IvPBehavior(gdomain) 

< 

mum = 0; 
range-set = false; 

inf o-vars. p~sh,back("NAV-X~~ ) ; 
inf o-vars . push-back ( "NAV-Ytl ) ; 
info,vars.push-back("N~V-HEADING"); 
inf o-vat-s . push-back ( "TRACK-STAT" ) ; 

> 

boo1 BHV-CloseRange: : setPararn(string param, string val) 

< 

IvPBehavior : : setParamCommon(param, val) ; 



if (param == llrange,minll) ( 
range-min = atof (val. c-str 0 ) ; 
return(true) ; 

J 

return true; 

messages. clear () ; 

// Need to know the name of ownship to query position 
if (us-name == "" ) ( 
postEMessage ("error ,BHV-CloseRange : ownship name not known. ") ; 
return(0) ; 

1 

boo1 okl,ok2,ok3,ok4; 
//get current course 
double osCourse = info-buffer->dQuery(us-name, "NAV-HEADING", &okl); 
//get current x 
double osX = info-buffer->dQuery(us-name, flNAV,Xn, &ok2); 
//get current heading 
double osY = inf o-buf f er->dQuery (us-name , Ii NAV-Y lo , &ok3) ; 
//get current tracking state 
string tState = infa-buffer->sQuery(u~~narne,~TRACK,STAT', &ok4); 

if(!oki I 1  !ok2 I I !ok3 Il!ok4)C 
postEMessage ("error, BHV-CloseRange : ownship data not availableti ) ; 
return (0); 

3 

int new-state = decode(t~tate) ; 



//if we don't have enough measurements, we don't want to 
//close range to the target 
if (mnum < meas-min) 
return(0) ; 

//fix the initial range 
if ( ! range-set) C 
init-range = sqrt ( (osX-tx) * (osX-tx)+(osY-ty) * (osY-ty) ) ; 
range-set = true; 

1 

double relevance = getRelevance(osX, osY, tx, ty); 

if (relevance <= 0) 
return (0) ; 

//use the CutRangeCPA AOF in the lib-behaviors-marine library 
AOF-CutRangeCPA aof,range(domain, ty, tx, heading, speed, osY, osX); 

OF-Reflector *ofr,range = new OF,Reflector(&aof,range,l); 

delete (ofr-range) ; 

of ->setDomainName (0, 91course'') ; 
of ->setDomainName (1, "speed") ; 
of ->setDomainName (2, "tol") ; 

/ / 

//this method decodes the output string from the 
//tracking process 
//-------------------------------------------------------- 

int BHV,CloseRange::decode(string status) 



{ 
vector<string> svector; 
vector<string> svector2; 

// Parse the waypoint status string for "us" 
svector = parse-string(status, ' , ') ; 
f or(unsigned int i=O; i<svector. size () ; i++) { 

svector2 = parse,string(svector [i] , '=') ; 
if (svector2.size() != 2) { 
postEMessage ("error ,BHV-CloseRange : Invalid waypoint string") ; 
retuxn(0) ; 

3 

string left = strip-blank-ends(svector2t01); 
string right = strip,blank,ends(svector2[1]); 
if (left == "state") state = atoi(right . c,str()) ; 
if (left == "x") tx = atof (right. c-str () ) ; 
if (left == "y") t Y = atof (right. c,str()) ; 
if (left == "heading") heading = atof (right. c-stro) ; 
if (left == "speed") speed = atof(right.c,str()); 
if (left == "mnum") mum = atof (right. c-str 0 ) ; 

1 

//this method dynamically determines the behavior weighting 
//based on the input parameters and the distance to the target 

double BHV~CloseRange::getRelevance(double osX, double osY, 
double cnX, double cnY) 

C 
boo1 silent = true; 

//this gets us pointed in the right direction 
if ( (init-range-cur-range) < 10) 
return(l.5) ; 

double dist = hypot ((osX - cnX) , (osY - cnY)) ; 

if (!silent) 
cout << "BHV-CloseRange: Current Distance ------ I' << dist << endl; 

//if we are too close, don't get any closer 



if (dist C range-min) 
return(O.O) ; 

double val = (dist-range,min)*.OO3; 

if (val < 0.0) 
val = 0.0; 

if (val > 1.0) 
val = 1.0; 

if (!silent) 
cout << "relevance = "CC val CCendl; 

return (val) ; 
1 



B.4 Orbit Behavior 

............................................................. 
/* NAME: Don Eickstedt */ 
/* FILE: AOF-DonWpt2D.h */ 
* DATE: 10 April 2005 */ 
............................................................. 

#include "AOF . h" 
#include " IvPDomain . h" 

class AOF-DonWpt2D: public AOF { 

public : 

AOF-DonWpt2D ( IvPDomain, double, double, double, double, double) ; 
-AOF,DonWpt2D () (1 ; 

public : 

double evalBox(const IvPBox*) const; // virtual defined 

protected: 

double metric(double, double) const; 

protected: 

double osLAT; // Ownship Lat position at time Tm. 
double osLON; // Ownship Lon position at time Tm. 
double targ-LAT; // target waypoint lat (Y) 
double targ-LON; // target waypoint lon (X) 
double dSpeed; //desired speed; 

double crsBase; 
double crsDelta; 
double spdBase; 
double spdDelta; 
double tolBase; 
double tolDelta; 

1; 
#endif 



............................................................. 
* NAME: Don Eickstedt */ 
/* FILE: AOF-DonWpt2D. cpp */ 
/* BORN: April 10, 200 5 */ 
............................................................. 

#include <iostream> 
#include <mathah> 
#include <assert. h> 
#include 11AOF,DonWpt2D. h" 
#include ItAngleUt ils . h" 
#include " IvPDomain . h" 

using namespace std; 

AOF,DonWpt2D::AOF~DonWpt2D(IvPDomain g-domain, double g-speed, 
double g-osLAT, double g-osLON, 
double g-targLAT, double g-targLON) 

C 
int crs-ix = g-domain. getInde~('~course") ; 
int spd-ix = g-domain. get Index ("speed") ; 
int tol-ix = g-domain. getIndex( "tolt') ; 

assert (crs-ix ! = -1) ; 
assert (spd-ix ! = -1) ; 
assert(to1-ix != -1); 

spdDelta = g-domain.get,ddelta(spd_ix); 
spdBase = g,domain.get,dlow(spd-ix); 
tolBase = g-domain. get-dlow (tol-ix) ; 

universe = IvPBox (3) ; 
universe.setPTS(0, 0, g,domain.get,dpoints(crs,ix)-1); 
universe. setPTS (1, 0, g-domain . get-dpoints (spd-ix) -1) ; 
universe. setPTS (2, 0, g-domain. get-dpoints (tol-ix)-1) ; 



//---------------------------------------------------------------- 
// Procedure: evalBox 
// Purpose: Evaluates a given <Course, Speed> 
// and returns a value after passing it thru the 
// metric0 function. 

double AO~~~onWpt2D::evalBox(const IvPBox *b) const 
C 
double rel-angle = relAng(osLON, osLAT, targ-LON, tug-LAT) ; 

double evalCRS = crsBase + ((double)(b->pt(O,O)) * crsDelta); 
double evalSPD = spdBase + ( (double) (b->pt (1,O) ) * spdDelt a) ; 

double crs-dif f = f abs (evalCRS - rel-angle) ; 
if (crs-dif f > 180) 
crs-diff = 360.0 - crs-diff; 

double spd-diff = fabs(dSpeed - evalSPD); 

double val = metric (crs-dif f , spd-dif f) ; 

//This method applies a metric to the proposed course and speed 
//------------------------------------------------------------------ 

double AOF-DonWpt2D::metric(double crs-diff, double spd-diff) const 
.t 
return((180.0 - crs-diff) - (2.0*spd,diff) ) ;  

1 



............................................................. 
/* NAME: Don Eickstedt */ 
/* FILE: BHV-0rbit.h */ 
............................................................. 

#ifndef BHV-ORBIT-HEADER 
#define BHV-ORBIT-HEADER 

#include <string> 
#include <vector> 
#include IvPBehavior . hi' 

using namespace std; 

class BHV-Orbit : public IvPBehavior ( 

public : 

IvPFunction* produceOF0; 
boo1 setParam(std: :string, std: :string) ; 
void make,orbit(double x,double y); 
int decode(string); 
bool preCheck 0 ; 

protected: 

std::vector<double> x-waypt; 
std::vector<double> y-waypt; 
std::vector<std::string> tag-waypt; 

bool orbit-set ; 
int current,waypt,orbit,pieces; 
double arrival-radius; 
double orbit-radius; 
double cenx,ceny; 
double cruise-speed; 

>; 
#endif 



............................................................. 
/* NAME: Don Eickstedt */ 
* FILE: BHV-0rbit.cpp */ 
/* DATE: */ 
............................................................. 
#include <string> 
#include <iostream> 
#include <math.h> 
#include <assert.h> 
#include "BHV-Orbit . h" 
#include "AOF-DonWpt2D.h" 
#include "OF-Ref1ector.h" 
#include " IvPDomain. hIt 
#include "MBUtils.hI1 
#include " AngleUt ils . h" 

using namespace std; 

BHV,Orbit::BHV,Orbit(IvPDornain gdomain) : 
IvPBehavior(gdomain) 

C 
this->setparam( "descriptor" , (d) bhv-Orbit It) ; 
this->setParam("unifbox", ttcourse=2, speed=2, tol=2"); 
this->setPa~am("gridbox~~, "course-8, speed=6, tol=6I1) ; 

current-waypt = 0; 
arrival-radius = 7; // Meters 
cruise-speed = 0; // Meters/second 
orbit-set = false; 
silent = true; 

inf o-vars . push-back ("NAV-X") ; 
inf o-vars . push-back ("NAV-Y") ; 
inf o-vars . push-back ("NAV-SPEED") ; 

boo1 BHV,Orbit::preCheck() 
C 
if(!checkConditions~))~ 

orbit-set = false; 
return(f alse) ; 



boo1 BHV-Orbit : : setParam(string param, string val) 
( 
if(IvPBehavior::setParamCommon(param, val)) 
return(true) ; 

if(param == "orbcenu) C 
vector<string> svector = parse,string(val, ' , ') ; 
cenx = atof (svector [O] . c-str 0) ; 
ceny = atof (svector [I] . c-str 0 )  ; 
return(true1; 

I- 
if (param == norbrad") { 
orbit-radius = atof (val . c-str ) ; 
return(true) ; 

1 
if (param == "pieces") ( 
orbit-pieces = (int) atof (val. c-str 0) ; 
return(true1; 

I- 
if (param == "speed") ( 
cruise-speed = atof (val. c-str 0 )  ; 
return(true) ; 

3 
if (param == "radius") ( 
arrival-radius = atof (val. c-str () ) ; 
return(true1; 

IvPFunction *BHV,Orbit::produceOF() 
C 

// clear each time produceOF() is called 
messages. clear 0 ; 



if (!unif -box I I !grid-box) C 
postEMessage ('BNull Unif Box or GridBox. "1 ; 
return(0) ; 

I- 

if ( ! silent) cout << "+++++BHV,Waypoint : : produceOF () " << endl ; 

// Need to know the name of ownship to query position 
if (us-name == "") ( 
postEMessage ("ownship name not known. It) ; 
return(0) ; 

boo1 ok; 
double osX = info-buffer->dQuery(us-name, "NAV-X", &ok) ; 
double osY = inf o-buf f er->dQuery (us-name , flNAV,Ygl, &ok) ; 
double osSPD = info-buffer->dQuery(us-name, "NAV,SPEEDM, &ok); 

if(!silent) cout << l1 osX:I8 << osX << " osY:" << osY << endl; 

// Must get ownship position from WorldModel 
if(!ok) C 
postEMessage("No ownship info in worldmodel. "1 ; 
return(0) ; 

//create the orbit waypoints if not already done 
if ( ! orbit-set) 
make-orbit (osX, osY) ; 

// If at the end of the waypoint list, start over 
if (current-waypt >= x-waypt . size () ) 
current-waypt = 0; 

double ptX = x-waypt [current-waypt] ; 
double ptY = y-waypt [current-waypt] ; 

//if we've arrived at a waypoint 
if (hypot ((osX-ptX) , (osY-ptY)) < arrival-radius) C 
//if there are more waypoints 
if (current-waypt < (x-waypt . size () -1) ) ( 
current,waypt++; 
ptX = x-waypt [current-waypt] ; 
ptY = y-waypt [current-waypt] ; 

1 
else( 



//start over at beginning of wp list 
current,waypt=O; 
ptX = x-waypt [current-waypt] ; 
ptY = y-waypt [current-waypt] ; 
1 

1 

if(!silent) cout << I' ptX:I1 << ptX << ptY:" << ptY << endl; 

AOF-DonWpt2D *aof-wpt = new AOF,DonWpt2D(domain, cruise-speed, osY, osX, ptY, ptX); 
OF-Reflector *ofr-wpt = new OF,Reflector(aof,wpt, 1); // 1 indicates pcwise linear 

ofr-wpt->create,uniforrn(unif-box, grid-box); 
IvPFunction *of = ofr-wpt->extxactOF(); 

delete (of r-wpt) ; 

of ->setDomainName (0, "course") ; 
of ->setDomainName (I, "speed") ; 
of ->setDomainName (2 ,  "toln) ; 
of ->setPWT (priority-wt) ; 

if ( ! silent C 
IvPBox mpt = of ->getPDMap () ->getGrid() ->getMaxPt () ; 
cout << "BHV-Orbit : :produceOF() : " << endl; 
cout << "maxpt : " << end1 ; 
mpt .print 0 ; 

I- 

double dist-meters = hypot ((osX-ptX) , (osY-ptY)) ; 
double eta-seconds = dist-meters / osSPD; 

if (!silent) cout << "dist " << dist-meters << eta I' << eta-seconds << endl; 

string stat = "vname=I1 + us-name + ", 'I; 
stat += ltindex=ll + int,to,string(current-waypt) + " , " ; 
stat += "distpn + double-to,string(dist,meters) + 'I,"; 
stat += "eta=" + double,to,string(eta,seconds) ; 

// This one is for us to read 
postMessage ( VEHICLE-WPT-STAT" , stat) ; 

// This one gets bridged to other vehicles perhaps 
postMessage ("VEHICLE-WPTTSTAT-US1l, stat) ; 



//this method dynamically creates a list of waypoints to 
//form the orbit about the required orbit center 
//----------------------------------------------------------- 
void BHV,Orbit::rnake,orbit(double x, double y) 
C 
double theta,inc,reverse~angle,fisst,wp~rads,cen~dist; 
char tag [5] ; 
boo1 silent; 

silent = false; 

x-waypt . clear 0 ; 
y-waypt . clear 0 ; 
tag-waypt . clear () ; 
current-waypt = 0; 

//radians between waypoints 
theta-inc = (2*M-PI) /orbit,pieces ; 

//find distance between the orbit center and current position 
cen-dist = sqrt (pow( (x-cenx) ,2) + pow( (y-ceny) ,2) ) ; 

//if we are inside the orbit radius 
if (cen-dist < orbit-radius) 
//choose North arbitrarily 
reverse-angle = (M-PU2.0) ; 

else 
//find the reverse angle from orbcen to current position 
reverse-angle = atan2 ( (y-ceny) , (x-cenx) ; 

if (!silent) cout << "reverse angle = << reverse-angle << It theta-inc = " << theta-inc << 

//increment first up to get smoother entry 
//clockwise 
first-wp-rads = reverse-angle - theta-inc; 

//step through the angles and create waypoints 
for (int i = 0; i < orbit-pieces; i++) 

C 
x,waypt.push,back(cenx + orbit,radius*cos(-(i*theta-inc)+first-wp-rads)); 
y-waypt . push-back (ceny + orbit,radius*sin(- (i*theta-inc) +f irst-up-rads) ) ; 
sprintf (tag, "%dl1, i) ; 
tag-waypt . push-back ( (string) tag) ; 
if (!silent) cout << "waypoint << i << ": I' << x,waypt[i] << " " << y,waypt[i] << end: 

1 



orbit-set = true; 
3 



B. 5 Format ion Behavior 

............................................................. 
/* NAME: Don Eickstedt */ 
* FILE: BHV-2VAngle.h */ 
............................................................. 

#define NO-TRACK 0 
#define LR-TRACK I 
#define TRACKING 2 

using namespace std; 

class IvPDomain; 
class BHV-2VAngle : public IvPBehavior ( 
public : 
BHV,2VAngle(IvPDomain); 
uBWV,2VAngle () {) ; 

protected: 

int decode(string); 
double get~elevance(double,double,double,double); 

double heading,speed,ty,tx,mum,range,max,range-min,init-r~ge,curr-range; 
int state,meas,min,new,state,sign; 



B.6 Format ion Behavior 

............................................................. 
/* NAME: Don Eickstedt */ 
/* FILE: BHV-2VAngle.cpp */ 
* DATE: July 03 2005 */ 
............................................................. 

<string> 
<iostream> 
<math. h> 
1tBHV,2VAngle. h" 
"AOF-WPT3D.h" 
"AOF-Shadow.h" 
"MBUtils .hl' 
"OF-Ref lector. h" 
I1BuildUt ils . hl' 

using namespace std; 

BHV,2VAngle::BHV,2VAngle(IvPDomain gdomain) : 
IvPBehavior(gdomain) 

C 
thi~->setParam(~~descriptor~~, I' (d)bhv-2VAnglen) ; 
this->setParam("~nifbox~~ , I1course=3, speed=2, to1 = 2") ; 
this->setParam("gridbox" , "course=9, speed=6, to1 = 6") ; 

domain = subDomain(domain, "course,speed,tol"); 

range-min = 0; 
sign = 1; 

info,vars.push,back("~A~,X"); 
inf o-vars . push-back ("NAV-Y") ; 
inf o-vars . push-back("NAV,HEADING") ; 
inf o-vars . push-back ( "TRACK-STAT" ) ; 
inf o-vars . p~sh-back(I~V2~XII) ; 
inf o-vars .p~sh,back("V2~Y") ; 

1 



bool BHV,2VAngle::setParam(string param, string val) 

IvPBehavior::setParamComrnon(param, val); 

f f (param == Itrange-min") { 
range-min = atof (val. c-str 0) ; 
return(trua) ; 

1 

if (param == "range-max") C 
range-max = atof (val . c-str 0) ; 
return(true1; 

1 

if (param == "sign") C 
sign= (int) atof(val.c,str~)); 
returnctrue) ; 

I- 

return true; 
1 

IvPFunction *BHV,2VAngle::produceOF() 
C 

// Need to know the name of ownship to query position 
if (us-name == "I1) f. 
postEMessage("error,BHV,CloseRange: ownship name not known."); 
return(0) ; 

1 

bool okl,ok2,ok3,ok4,ok5,ok6; 
//get current course 
double osCourse = inf o-buf f er->dQuery(us-name, "NAV-HEADING" , &okl) ; 
//get current x 
double osX = info-buffer->dQuery(us-name, "NAV,Xn, &ok2); 
//get current heading 
double osY = info-buffer->dQuery(us-name, "NAV-Y", &ok3); 



//get current tracking state 
string tState = inf o-buf f er->sQuery(us-name, "TRACK-STAT , &ok4) ; 

double v2-x = inf o-buf f er->dQuery (us-name , "V2-XI1 ,&ok5) ; 
double v2-y = info-buffer->dQuery(us-name,V2-Y1',&ok6); 

if(!oki I I  !ok2 I I  !ok3 ll!ok411!ok511!0k6)< 
postEMessage ("error, BHV-2VAngle : buffer data not availableo1 ) ; 
return (0); 

new-state = decode(tState) ; 

double relevance = getRelevance (osx, osY, tx, ty) ; 

if (relevance <= 0) 
return(0) ; 

double angle1 = atan2 (ty-osY, tx-osX) ; 
double angle2 = atan2(ty-v2,y, tx-v2-x) ; 

double sep-angle = anglel-angle2; 

if (sep-angle < -180.0) 
sep-angle += 360.0; 

if (sep-angle > 180.0) 
sep-angle = 360.0 - sep-angle; 

sep-angle = fabs(sep,angle)*l80,O/M,PI; 

double ang = 90.0 - (heading + (sign)* 135.0) ; 

double d-x = 5O.O*cos(ang*M~PI/180.0) + tx; 
double d-y = 5O.O*sin(ang*M-PI/180.0) + ty; 

//if we are within 5 meters of our desired location just shadow 
if(d-r < 5.O)C 

AOF-Shadow aof (domain) ; 
aof . setParam("cn,crs", heading) ; 
aof . setParam("cn,spd", speed) ; 
aof . initialize0 ; 



OF-Ref lector ref lector (&aof , I) ; 

IvPFunction *of = reflector.extractOF(); 

of ->setPWT (relevance*priority-wt) ; 
return (of) ; 

1 
//otherwise move to the desired location 
else{ 

AOF-WPT3D aof (domain) ; 
aof , setParam("os1at ", osY) ; 
aof . setParam(l'oslon", osX) ; 
aof . setParam("pt1at ", d-y) ; 
aof . ~etParam(~'ptlon~, d-x) ; 
aof . setParam("desired,speed", 3.0) ; 
aof . initialize 0 ; 

OF-Ref lector ref lector (&aof , I) ; 

ref lector. create-unif orm(unif ,box, grid,box) ; 

IvPFunction *of = reflector.extractOF(); 

1 

int BHV-2VAngle: :decode(string status) 
i 
vector<string> svector; 
vector<string> svector2; 

// Parse the waypoint status string for "us" 
svector = parse-string(status, ' , '1 ; 
for(unsigned int i=O; i<svector.size(); i++) { 
svector2 = parse,string(svector [i] , '=' ) ; 
if (svector2. size() ! = 2) { 
postEMessage("error ,BHV-CloseRange : Invalid waypoint string") ; 
return(0) ; 



string left = strip,blank,ends(svector2 [Ol ) ; 
string right = strip,blank,ends(svector2[i]); 
if (left == "state") state = atoi (right. c-str ()) ; 
if (left == 19xn) t x  = atof (right. c-str 0) ; 
if (left == "y") t Y = atof (right. c-str 0) ; 
if (left == "headingu) heading = atof (right. c-str 0) ; 
if (left == 11speed91) speed = atof (right. c-str (1 ) ; 
if (left == "mumv)  mnum = atof (right. c-stro) ; 

double BHV,2VAngle::getRelevance(double osX, double osY, 
double cnX, double cnY) 

< 
boo1 silent = true; 

//always fully relevant 
return(l.O) ; 

> 





Appendix C 

Sample Mission Files 

C.l  MOOS Files 

C. l . l  December 4, Mission 1507 - Sensor Vehicle 200 

%% LOG FILE: ../data,from,runs/Kayakak2OO~4~1222OO55~5~~l5~O7.~moos 
%% FILE OPENED ON Sun Dec 4 15:07:26 2005 
"/,% LOGSTART 1133726846.18 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 b 0 0 0 0 b b 0 0 b b 0 0 0 0 0 0 b b 0 b 0 0 0 0 0 ~ 0 0 0 0 b b 0  LLLLLLLLLLLLLXLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL4LLLLLL 

// Configuration file: M. Benjamin 
// 
// Note: level0 vs. level2 all references to machines names 
// in this file would be replaced by "localhost" in 
// the level2 counterpart. Also, iPWMController, iGPS 
// and iPNICController are not started up in level2. 
// And level2 would launch iMarineSim. 
// 
// Note: level0 vs. level1 iMarineSim is run in the level1 
// counterpart. In levell, iGPS and iPNICompass are 
// not run. 

ServerHost = 192.168.0.200 
Serverport = 9000 
Simulator = false 

// Community name IS the vehicle name 
Community = nyak200 



// Antler configuration block 

ProcessConfig = ANTLER 
C 
MSBetweenLaunches = 200 

//crucial processes 
Run = MOOSDB Q NewConsole = false 
Run = iGPS Q NewConsole = false 
Run = iPNICompass Q NewConsole = false 
Run = iPWMController Q NewConsole = false 
Run = iMetaCompass Q NewConsole = false 
Run = pMOOSBridge @ Newconsole = false 
Run = pNav Q NewConsole = false 
Run = pLogger O NewConsole = false 

Run = pBearings Q NewConsole = false 
Run = p1BTracker Q NewConsole = false 

//Run = MOOSDump Q NewConsole = false 
//Run = pHelmIvP @ NewConsole = false 
//Run = iRemote Q NewConsole = false 

1 

ProcessConfig = pMO0SBridge-200 

AppTick = 2 
CommsTick = 2 

// SHARE = [VARl -> to-community @ to-host : to-port [VAR] 

SHARE = [HELM-SUMMARY] -> marineviewer055 Q 192.168.0.55:9055 [HELM-SUMMARY-VIEW] 
SHARE = [TRACK,STAT,TRACKING,SIGNAL,TRACK,CONTROL] -> nyak206 Q 192.168.0.206:9000 [TRACKS 

1 

ProcessConfig = plBTracker 
C 
AppTick - 4  
CommsTick = 4 
range-guess = 200 
max,measurements = 150 



ProcessConfig = pBearings 

AppTick = 4 
CommsTick = 4 
sigma = 0.0 //degrees 

1 

//------------------------------------------------------------------ 
// pHelmIvP config block 
// Note: pHelmIvP must know the vehicle name. pHelmIvP will look 
// for the global line "Community = name" in the .moos file. 

ProcessConfig = pHelmIvP 
t 
AppTick - 4  
CommsTick = 4 

Domain = course,0:359:360 
Domain = speed,0:3:16 
Domain = tol,1:45:15 

//IF BELOW IS COMMENTED OUT - BHV FILE IS GIVEN AS COMMAND LINE ARG 
//Behaviors = foobar.bhv 

// Yaw PID controller 
YAW-PID-KP = 0.4 
YAW-PID-KD = 0.03 
YAW-PID-KI = 0.0 
YAW,PID,INTEGRAL,LIMIT = 0.07 

// Speed PTD controller 
SPEED-PID-KP = 0.5 
SPEED-PID-KD = 0.0 
SPEED-PID-KI = 0.0 
SPEED-PID-INTEGRAL-LIMIT = 0.07 

// Setting LOGPATH will cause PID data to be logged 
LOGPATH = ../data,from-runs/ 

// A non-zero SPEED-FACTOR overrides use of SPEED-PID 



// Will set DESIRED-THRUST = DESIRED-SPEED * SPEED-FACTOR 
SPEED-FACTOR = 30 

META-COMPASS = true 

/ / 

/ /  iRemote configuration block 

ProcessConfig = iRemote 
i 

CustomKey = 1 : HELM-VERBOSE Q "verbose" 
CustomKey = 2 : HELM-VERBOSE 6 "terse" 
CustomKey = 3 : HELM-VERBOSE 6 "quiet" 

I- 

// Logger configuration block 

ProcessConfig = pLogger 
t 
//over loading basic params. . . 
AppTick = 5.0 
CommsTick = 5.0 

File = Kayak-200 
PATH = . . /data,f rom,runs/ 
SyncLog = true Q 0.2 
AsyncLog = true 
FileTimeStamp = true 

Log = DESIRED-THRUST Q 
Log - DESIRED-RUDDER Q 

NAV-YAW Q 0.1  
NAV-SPEED Q 0 . 1  
GPS-X Q 0.1  
GPS-Y Q 0 .1  
GPS-SPEED @ 0 . 1  
GPS-HEADING Q 0 .1  
GPS-TIME Q 0 .1  
COMPASS-HEADING Q 0.1  
LOOP-CPU Q 0.1 
VEHICLE-WPT-INDEX @ 0 .1  
META-HEADING CI 0.1  
META-OFFSET @ 0.1 



META-SOURCE Q 0.1 
MICROMODEM-RAW 8 0.1 
MICROMODEM,SERVICE Q 0.1 
MICROMODEM-COMMAND 8 0.1 
MICROMODEM-STATUS @ 0.1 
MICROMODEM-DATA 0 0.1 
MOW-TARGET @ 0.1 
MOW-HISTORY Q 0.1 
MOW-QUALITY O 0.1 
BHV-RESOLVE-ACTIVE @ 0.1 
TIME-SINCE-UPGRADE 8 0.1 
BHV-RESOLVE-WT @ 0.1 
BHV-SENTRY-WT 0 0.1 
TRACK-STAT Q 0.1 
BEARING-STAT 8 0.1 
TARGET-X 8 0.1 
TARGET-Y 8 0.1 
TARGET-XPOS 8 0.1 
TARGET-YPOS Q 0.1 
TARGET-HEADING 0 0.1 
TARGET-SPEED Q 0.1 
TRACKING-SIGNAL @ 0.1 
DESIRED-SPEED 0 0.1 
DESIRED-HEADING 8 0.1 

//------------------------------------------------------------------ 
// iPWMController configuration block 

ProcessConfig = iPWMController 
.c 
AppTick = 4 
CommsTick = 4 
Port = /dev/ttySO 
ThrustPWM 6 
RudderPWM = 7 
Timeout - 10 
Rudderoffset = 0 

1 

ProcessConfig = pNav 
C 
AppTick = 5 
CommsTick = 5 



X = GPS O 5.0 
Y = GPS Q 5.0 
Yaw = Compass O 5.0, GPS Q 5.0 
Speed = GPS Q 5.0 
z = 

...................................... 
// FILTER CONTROL: 
...................................... 

UseLSQ = false 
UseEKF = false 
UseTOPDOWN = false 

FixedDepth = 0 Q 0.1 

ProcessConfig = iGPS 

AppTick = 10 
CommsTick = 10 
Port = /dev/ttySi 
BaudRate = 4800 
Streaming = true 
Verbose = true 
Type = GARMIN 

//------------------------------------------------------------------ 
// iPNICompass configuration block 

ProcessConfig = iPNICompass 
4. 
AppTick = 4 
CommsTick = 4 
Port = /dev/ttyS3 
Type = V2Xe 
Speed = 9600 
PreRotation = -90 

> 
//------------------------------------------------------------------ 
// iMetaCompass configuration block 



ProcessConfig = iMetaCompass 
< 
AppTick = 5 
CommsTick = 5 
SpeedThresh = 0.2 

C.1.2 December 4, Mission 1507 - Target Vehicle 201 

%% LOG FILE: ../data,from,runs/Kayakak20114412~2005 15-15.-moos 
%% FILE OPENED ON Sun Dec 4 15:15:11 2005 
%% LOGSTART 1133727310.42 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0  LALA ALLLAX ALLALLALLALALLLALLLLLLLLLLLLALLLLLLLLLLLLLLLLLLLL 

// Configuration file : M. Benjamin 
// 
// Note: level0 vs. level2 a11 references to machines names 
// in this file would be replaced by "localhost" in 
// the level2 counterpart. Also, iPWMController, iGPS 
// and iPNICController are not started up in level2. 
// And level2 would launch iMarineSim. 
// 
// Note: level0 vs. level1 iMarineSim is run in the level1 
// counterpart. In levell, iGPS and iPNICompass are 
// not run. 

ServerHost = 192.168.0.201 
Serverport = 9000 
Simulator = false 

// Community name IS the vehicle name 
Community = nyak201 

//------------------------------------------------------------------ 
// Antler configuration block 

ProcessConfig = ANTLER 

//crucial processes 
R u n  = MOOSDB Q Newconsole = false 



Run = 

Run = 

Run = 
Run = 

Run = 

Run = 

Run = 

Run = 

//Run 
//Run 
//Run 

3 

iGPS 0 NewConsole = false 
iPNICompass 0 NewConsole = false 
iPWMController Q NewConsole = false 
iMetaCompass Q NewConsole = false 
pMOOSBridge 0 Newconsole = false " pMOOSBridge-201 
pNav Q NewConsole = false 
pLogger Q NewConsole = false 

pTarget Q Newconsole = false 

= MOOSDump 0 NewConsole = false 
= pHelmIvP 0 NewConsole = false 
= iRemote 0 NewConsole = false 

ProcessConfig = pMOOSBridge-201 

AppTick - 1  
CommsTick = 1 

// SHARE = [VARJ -> to-community 0 to-host :to-port [VAR] 

SHARE = 

SHARE = 

//SHARE 
3 

[HELM-SUMMARY] -> marineviewer055 Q 192.168.0.55:9055 [HELM-SUMMARY-VIEW] 

//------------------------------------------------------------------ 
// ~Target config block 

ProcessConfig = pTarget 
.I 
AppTick = 4 
CommsTick = 4 
//polygon = -200,-25:200,-25:200,-400:-200,-400 
polygon = 80,-10:269,37:360,-400:120,-240 

//------------------------------------------------------------------ 
// pHelmIvP config block 
// Note: pHelmIvP must know the vehicle name. pHelmIvP will look 
// for the global line "Community = name" in the .moos file. 



ProcessConfig = pHelmIvP 
C 
AppTick - 4  
CommsTick = 4 

Domain = course,0:359:360 
Domain = speed,0:3:16 
Domain = tol,1:45:15 

//IF BELOW IS COMMENTED OUT - BHV FILE IS GIVEN AS COMMAND LINE ARG 
//Behaviors = f oobar . bhv 

// Yaw PID controller 
YAW-PID-KP = 0.4 
YAW-PID-KD = 0.03 
YAW-PID-KI = 0.0 
YAW,PID,INTEGRAL,LIMIT = 0.07 

// Speed PID controller 
SPEED-PID-KP = 0.5 
SPEED-PID-KD = 0.0 
SPEED-PID-KI = 0.0 
SPEED-PID-INTEGRAL-LIMIT = 0.07 

// Setting LOGPATH will cause PID data to be logged 
LOGPATH = ../data,from,runs/ 

// A non-zero SPEED-FACTOR overrides use of SPEED-PID 
// Will set DESIRED-THRUST = DESIRED-SPEED * SPEED-FACTOR 
SPEED-FACTOR = 30 

META-COMPASS = true 
1 

ProcessConfig = iRemote 

CustomKey = 1 : HELM-VERBOSE @ llverbose" 
CustomKey = 2 : HELM-VERBOSE @ lltersell 
CustomKey = 3 : HELM-VERBOSE @ "quietI1 

1 

//------------------------------------------------------------------ 
// Logger configuration block 



Processconfig = pLogger 
C 
//over loading basic params. . . 
AppTick = 5.0 
CommsTick = 5.0 

File = Kayak-201 
PATH = . . /dat a-f rom-runs/ 
SyncLog = true Q 0.2 
AsyncLog = true 
FileTimeStamp = true 

Log = DESIRED-THRUST 8 0.1 
Log = DESIRED-RUDDER GI 0.1 

Log = NAV-X @ 0.1 
Log = NAV-Y Q 0.1 
Log = NAV-YAW 0 0.1 
Log = NAV-SPEED Q 0.1 
Log = GPS-X 0 0.1 
Log = GPS-Y 0 0.1 
Log = GPS-SPEED Q 0.1 
Log = GPS-HEADING @ 0.1 
Log = GPS-TIME Q 0.1 
Log = COMPASS-HEADING Q 0.1 
1% = LOOP,CPU 0 0.1 
Log = VEHICLE-WPT-INDEX 8 0.1 
Log = META-HEADING GI 0.1 
Log = META-OFFSET Q 0.1 
Log = META-SOURCE 0 0.1 
Log = MICROMODEM-RAW 8 0.1 
Log = MICROMODEM-SERVICE 0 0.1 
Log = MICROMODEM-COMMAND @ 0.1 
Log = MICROMODEM-STATUS @ 0.1 
Log = MICROMODEM-DATA 0 0.1 
Log = MOW-TARGET Q 0.1 
Log = MOW-HISTORY 8 0.1 
Log = MOW-QUALITY 0 0.1 
Log = BHV-RESOLVE-ACTIVE Q 0.1 
Log = TIME-SINCE-UPGRADE GI 0.1 
Log = BHV-RESOLVE-WT @ 0.1 
Log = BHV-SENTRY-WT Q 0.1 
Log = TRACK-STAT 8 0.1 
Log = BEARING-STAT Q 0.1 
Log = TARGET-X Q 0.1 
Log = TARGET-Y @ 0.1 
Log = TARGET-XPOS Q 0.1 



TARGET-YPOS Q 0.1 
TARGET-HEADING @ 0.1 
TARGET-SPEED O 0.1 
TRACKING-SIGNAL GI 0.1 
DESIRED-SPEED O 0.1 
DESIRED-HEADING O 0.1 

//------------------------------------------------------------------ 
// iPWMController configuration block 

ProcessConfig = iPWMController 
< 
AppTick = 4 
CommsTick = 4 
Port = /dev/ttySO 
ThrustPWM = 6 
RudderPWM = 7 
Timeout = 10 
Rudderoffset = 0 

E 

ProcessConfig = pNav 

AppTick = 5  
CommsTick = 5 

X = GPS Q 5.0 
Y = GPS O 5.0 
Yaw = Compass 42 5.0, GPS O 5.0 
Speed = GPS @ 5.0 
z = 

...................................... 
// FILTER CONTROL: 
...................................... 

UseLSQ = false 
UseEKF = false 
UseTOPDOWN = false 



ProcessConfig = iGPS 
1 
AppTick = 10 
CommsTick = 10 
Port = /dev/ttySl 
BaudRate = 4800 
Streaming = true 
Verbose = true 
Type = GARMIN 

//------------------------------------------------------------------ 
// iPNICompass configuration block 

ProcessConfig = iPNICompass 
< 
AppTick = 4 
CommsTick = 4 
Port = /dev/ttyS3 
Type = V2Xe 
Speed = 9600 
PreRotation = -90 

3 

//------------------------------------------------------------------ 
// iMataCompass configuration block 

ProcessConfig = iMetaCompass 

AppTick - 5  
CommsTick = 5 
SpeedThresh = 0.2 

C.1.3 December 4, Mission 1507 - Classification Vehicle 206 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  LLLXLLLLLLLLLLLL LLLLLLLLLLLLLLLLLLLLLLLLLXLLLLLLLLLLLLLLLLL 
"/A LOG FILE: ../data~from~runs/Kayak~2O6~44l2~2OO555~~~15~O8.~moos 
%% FILE OPENED ON Sun Dec 4 15:08:09 2005 
%% LOGSTART 1133726887.59 

.............................................................. 
// Configuration file: M. Benjamin 
// 
// Note: level0 vs.  level2 all references to machines names 



// in this file would be replaced by l~localhost" in 
// the level2 counterpart. Also, iPWMController, iGPS 
// and iPNICController are not started up in level2. 
// And level2 would launch iMarineSim. 
// 
// Note: level0 vs. level1 iMarineSim is run in the level1 
// counterpart. In levell, iGPS and iPNICompass are 
// not run. 

ServerHost = 192.168.0.206 
Serverport = 9000 
Simulator = false 

// Community name IS the vehicle name 
Community = nyak206 

Processconfig = ANTLER 
C 
MSBetweenLaunches = 200 

//crucial processes 
Run = MOOSDB O NewConsole = false 
Run = iGPS O NewConsole = false 
Run = iPNICompass Q NewConsole = false 
Run = iPWMController Q NewConsole = false 
Run = iMetaCompass Q NewConsole = false 
Run = pMOOSBridge O NewConsole = false - pMOOSBridge-206 
Run = pNav Q NewConsole = false 
Run = pLogger Q NewConsole = false 

Run = pExtTracker Q NewConsole = false 

//Run = MOOSDump 0 NewConsole = false 
//Run = pHelmIvP @ NewConsole = false 
//Run = iRemote 0 NewConsole = false 

1 



ProcessConfig = pMOOSBridge-206 

AppTick = 2  
CommsTick = 2 
// SHARE = [VARl -> to-community Q to-host :to-port [VAR] 

SHARE = [HELM-SUMMARY] -> marineviewer055 Q 192.168.0.55 : 9055 [HELM-SUMMARY-VIEW] 
3 

ProcessConfig = pExtTracker 
< 
AppTick - 4  
CommsTick = 4 
initial-state = 2 

3 

//------------------------------------------------------------------ 
// pHelmIvP config block 
// Note: pHelmIvP must know the vehicle name. pHelmIvP will look 
// for the global line "Community = name" in the .moos file. 

ProcessConfig = pHelmIvP 
C 
AppTick = 4 
CommsTick = 4 

Domain = course,0:359:360 
Domain = speed,0:3:16 
Domain = tol,1:45:15 

//IF BELOW IS COMMENTED OUT - BHV FILE IS GIVEN AS COMMAND LINE ARG 
//Behaviors = f oobar. bhv 

// Yaw PID controller 
YAW-PID-KP = 0.4 
YAW-PID-KD = 0.03 
YAW-PID-KI = 0.0 
YAW-PID-INTEGRAL-LIMIT = 0.07 

// Speed PID controller 
SPEED-PID-KP = 0.5 
SPEED-PID-KD = 0.0 
SPEED-PID-KI = 0.0 



// Setting LOGPATH will cause PID data to be logged 
LOGPATH = ../data,from,runs/ 

// A non-zero SPEED-FACTOR overrides use of SPEED-PID 
// Will set DESIRED-THRUST = DESIRED-SPEED * SPEED-FACTOR 
SPEED-FACTOR = 30 

META-COMPASS = true 

ProcessConfig = iRemote 
{ 

CustomKey = I : HELM-VERBOSE 0 "vexbose" 
CustomKey = 2 : HELM-VERBOSE 0 "terse" 
CustomKey = 3 : HELM-VERBOSE @ "quiet" 

ProcessConfig = pLogger 
.c 
//over loading basic paxams. . . 
AppTick = 5.0  
CommsTick = 5 .0  

File = Kayak-206 
PATH = . . /data,from,runs/ 
SyncLog = true Q 0.2 
AsyncLog = true 
FileTimeStamp = true 

Log = DESIRED-THRUST 0 0 . 1  
Log = DESIRED-RUDDER Q 0.1 

Log = NAV-X 0 0.  I 
Log = NAV-Y Q 0 . 1  
Log = NAV-YAW 0 0.1 
Log = NAV-SPEED 0 0 . 1  
Log = GPS-X 0 0 . 1  
Log = GPS-Y O 0 . 1  
Log = GPS-SPEED Q 0 .1  
Log = GPS-HEADING 0 0.1  



= GPS-TIME 0 0.1 
= COMPASS-HEADING 0 0.1 
= LOOP-CPU @ 0.1 
= VEHICLE-WPT-INDEX 0 0.1 
= META-HEADING 0 0.1 
= META-OFFSET 42 0.1 
= META-SOURCE @ 0.1 
= MICROMODEM-RAW 0 0.1 
= MICROMODEM-SERVICE @ 0.1 
= MICROMODEM-COMMAND @ 0.1 
= MICROMODEM-STATUS 0 0.1 
= MICROMODEM-DATA Q 0.1 
= MOW-TARGET 0 0.1 
= MOW-HISTORY @ 0.1 
= MOW-QUALITY Q 0.1 
= BHV-RESOLVE-ACTIVE @ 0.1 
= TIME-SINCE-UPGRADE @ 0.1 
= BHV-RESOLVE-WT @ 0.1 
= BHV-SENTRY-WT 0 0.1 
= TRACK-STAT 0 0.1 
= BEARING-STAT @ 0.1 
= TARGET-X 0 0.1 
TARGET-Y 0 0.1 

= TARGET-XPOS 43 0.1 
= TARGET-YPOS @ 0.1 
= TARGET-HEADING Q 0.1 
= TARGET-SPEED @ 0.1 - TRACKING-SIGNAL 0 0.1 
= DESIRED-SPEED 0 0.1 
= DESIRED-HEADING 8 0.1 

ProcessConfig = iPWMController 
I 
AppTick = 4 
CommsTick = 4 
Port = /dev/ttySO 
ThrustPWM = 6 
RudderPWM - 7 
Timeout = 10 
RudderOffset .= 0 

1 



// pNav configuration block 

ProcessConfig = pNav 
C 
AppTick = 5 
CommsTick = 5 

X = GPS Q 5.0 
Y = GPS Q 5.0 
Yaw = Compass Q 5.0, GPS Q 5.0 
Speed = GPS @ 5.0 
z = 

...................................... 
// FILTER CONTROL: 
...................................... 

UseLSQ = false 
UseEKF = false 
UseTOPDOWN = false 

FixedDepth = 0 Q 0.1 
1 

// iGPS configuration block 

ProcessConfig = iGPS 
C 
AppTick = 10 
CommsTick = 10 
Port = /dev/ttySl 
BaudRate = 19200 
Streaming = true 
Verbose = true 
Type = GARMIN 

1 

// iPNICompass configuration block 

ProcessConfig = iPNICompass 
C 
AppTick = 4 
CommsTick = 4 
Port = /dev/ttyS3 
Type = V2Xe 



Speed = 9600 
PreRotation = -90 

// iMetaCompass configuration block 

Processconfig = iMetaCompass 
C 
AppTick = 5 
CommsTick = 5 
SpeedThresh = 0.2 

Behavior Files 

C.2.1 December 4, Mission 1507 - Sensor Vehicle 200 

// This is a behavior configuration file. 
// for the one-bearing tracking sensor vehicle 200. 
// 
// Legal comments are anything to the right of "//" 
// or anything to the right of ' I#" 

Initial-Var = RETURN,HOME,false 

i 
name = bhv-arrayturn 
pwt = 100 
condition = TRACKING,AMBIGUOUS 
condition = :RETURN,HOME,false 

3 

Behavior = BHV-ArrayAngle 
C 
name = bhv-arrayangle 
pwt = 100 
width = 30 
range-max = 
range-min = 

condition = 

condition = 

3 



Behavior = BHV-CloseRange 
C 
name = bhv-closerange 
pwt = 110 
meas-min = 40 
range-max = 250 
range-min = 30 
condition = TRACKING,TRACKING 
condition = :RETURN,HOME,false 

> 

Behavior = BHV-Orbit 
< 
name = bhv-orbit 
pwt = 100 
oxbcen = -100,-150 
orbrad = 50 
pieces = 8 
radius = 9 
speed = 2 
condition = TRACKING,NO-TRACK 
condition = :RETURN,HOME,false 

3 

Behavior = BHV-Waypoint 
C 
name = bhv-return 
speed = 1.4 
radius =8.0 
points =0,-10: 
condition = :RETURN,HOME,true 

3 

Behavior = BHV-OpRegion 
C 
polygon = labe1,SafeOpBox: -280,-110:-130,-490:400,-280:250,10:80,40 
name = bhv-op-region 

E 

(2.2.2 December 4, Mission 1507 - Target Vehicle 201 
Initial-Var = RETURN,HQME,false 



Behavior = BHV-Waypoint 
C 
name = bhv-waypt 

Put = 100 
speed = 0.9 
radius = 8.0 
points = 100,0:250,-190:20,-10 
condition = :RETURN,HOME,false 

1 

Behavior = BHV-Waypoint 
C 
name = bhv-return 
speed = 1.4 
radius = 8.0 
points = 0,-10: 
condition = :RETURN,HOME,true 

3 

Behavior = BHV-OpRegion 

polygon = labe1,SafeOpBox: -280,-110:-130,-490:400,-280:250,10:80,40 
name = bhv-op-region 

I- 

C.2.3 December 4, Mission 1507 - Classification Vehicle 206 

// This is a behavior configuration file. 
// 
// Legal comments are anything to the right of 
// or anything to the right of "#It  

Initial-Var = RETURN,HOME,false 

Behavior = BHV-Classify 
C 
name = bhv-closerange 
put = 100 
us = nyak204 
meas-min = 10 
range-max = 350 
range-min = 35 
condition = TRACKING,TRACKING 
condition = :RETURN,HOME,false 



Behavior = BHV-Orbit 
C 
name = bhv-orbit 
put = 100 
us = nyak204 
orbcen = 0,-100 
orbrad = 50 
pieces = 8 
radius = 9 
speed = 2 
condition = TRACKING,NO,TRACK 
condition = :RETURN-HOME,false 

1 

Behavior = BHV-Constantspeed 
< 
name = bhv-speed 
put = 1 
us = nyak204 
speed = 2.0 
condition = :RETURN,HOME,false 

3 

Behavior = BHV-Waypoint 

name = bhv-return 
speed = 1.4 
radius = 8.0 
points = 0,-10: 
condition = :RETURN,HOME,true 

3 

//---------------------------------------------- 

Behavior = BHV-OpRegion 
< 
polygon = labe1,SafeOpBox: -280,-110:-130,-490:400,-280:250,10:80,40 
name = bhv-op-region 

3 
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