213,903 research outputs found
Using Concept Maps to Plan an Introductory Structural Geology Course
This report presents the results of incorporating constructivist methods, including concept maps, into an undergraduate structural geology curriculum. A concept map is a visual representation of concepts and their relationship to each other in a body of knowledge. They show the hierarchy of these concepts and emphasize the links between them. The overall goal of this project was to encourage students to adopt a deep/holistic approach to learning in order to better understand the concepts of structural geology. The authors sought to determine whether teaching methods became more overtly constructivist, whether there was a change in the order of presentation of topics, and whether the order of presentation normally followed by textbooks was the same as the order determined using concept maps. Educational levels: Graduate or professional
Geologic hypotheses of Lake Tanganyika region, Zaire, drawn from ERTS imagery
Based on initial work in the Lake Tanganyika area of eastern Zaire, it has been concluded that ERTS imagery is extremely useful for reconnaissance level geologic mapping and analysis in this region of the humid tropics. In particular, ERTS imagery has proven useful for recognizing and mapping regional structural units, for recognizing major structural features, and for arriving at some preliminary hypotheses about the mineral potential of the area. Results so far indicate that ERTS imagery can make a major contribution to the development of the mineral resources of the country. Research has concentrated on applications of ERTS imagery in the field of cartography, geology, forestry, hydrology and agriculture. For the work in geology, a test site was chosen in eastern Zaire on the shore of Lake Tanganyika in the vicinity of the Lukuga River. This area was selected because of its varied geology and the existence of two frames of cloud-free ERTS imagery
Relation of Magnetic and Gravity Field Data to Selected Structural Elements of the Central Portion of the Arkoma Basin
In order to acquire a greater understanding of some of the major basement structural features characteristic of the Arkoma basin, magnetic and gravity data have been collected and analyzed for a selected area. Several anomalies exist and are found to be associated with faulting or major fracturing in the Precambrian basement. Modelling of source bodies based on magnetic and gravity values provides quantitative estimates of the depth as well as the geometry of basement structural geology
Industrial structural geology : principles, techniques and integration : an introduction
The authors wish to acknowledge the generous financial support provided in association with this volume to the Geological Society and the Petroleum Group by Badley Geoscience Ltd, BP, CGG Robertson, Dana Petroleum Ltd, Getech Group plc, Maersk Oil North Sea UK Ltd, Midland Valley Exploration Ltd, Rock Deformation Research (Schlumberger) and Borehole Image & Core Specialists (Wildcat Geoscience, Walker Geoscience and Prolog Geoscience). We would like to thank the fine team at the Geological Society’s Publishing House for the excellent support and encouragement that they have provided to the editors and authors of this Special Publication.Peer reviewedPublisher PD
Using Empirical Recurrence Rates Ratio For Time Series Data Similarity
Several methods exist in classification literature to quantify the similarity between two time series data sets. Applications of these methods range from the traditional Euclidean type metric to the more advanced Dynamic Time Warping metric. Most of these adequately address structural similarity but fail in meeting goals outside it. For example, a tool that could be excellent to identify the seasonal similarity between two time series vectors might prove inadequate in the presence of outliers. In this paper, we have proposed a unifying measure for binary classification that performed well while embracing several aspects of dissimilarity. This statistic is gaining prominence in various fields, such as geology and finance, and is crucial in time series database formation and clustering studies
Multiseasonal variables in digital image enhancements for geological applications
Examples of enhanced multiseasonal orbital imagery illustrate the influence of multiseasonal changes in their spatial and spectral attributes, and consequently in their application to structural geology and lithological discrimination. Shadow effects associated with appropriate solar elevation and azimuth effects enhance the spatial attributes but not the spectral. In this case, variations in illumination conditions should be minimized by selecting images with high solar elevation and by the use of techniques that minimize illumination conditions. Multiseasonal imagery should be used in the identification of spectral contrast changes of rock-soil-vegetation associations which can provide evidences of related lithological units and structural features. The extraction of maximum geological information requires, at least, a fall/winter and a spring/summer scene from which spatial, spectral and multiseasonal attributes can be adequately explored
Mantle structural geology from seismic anisotropy
International audienceSeismic anisotropy is a ubiquitous feature of the subcontinental mantle. This can be inferred both from direct seismic observations of shear wave splitting from teleseismic shear waves, as well as the petrofabric analyses of mantle nodules from kimberlite pipes. The anisotropy is principally due to the strain-induced lattice preferred orientation (LPO) of olivine. The combined use of these mantle samples, deformation experiments on olivine, and numerical modeling of LPO, provides a critical framework for making inferences about mantle deformation from observed seismic anisotropy. In most cases there is a close correspondence between mantle deformation derived from seismic observations of anisotropy, and crustal deformation, from the Archean to the present. This implies that the mantle plays a major, if not dominant role in continental deformation. No clear evidence is found for a continental asthenospheric decoupling zone, suggesting that continents are probably coupled to general mantle circulation
Two-sided asymmetric subduction; implications for tectonomagmatic and metallogenic evolution of the Lut Block, Eastern Iran
West directed subduction zones show common characteristics, such as low structural elevation, deep trench, steep slab and a
conjugate back-arc basin that are opposite to those of the east directed subduction zones. The tectonomagmatic and
metallogenic setting of the Lut Block is still a matter of debate and several hypotheses have been put forward. Despite some
authors denying the influence of the operation of Benioff planes, the majority propose that it occurred beneath the Afghan
Block, while others consider that oceanic lithosphere was dragged under the Lut Block. Cu-Au porphyry deposits seem to
occur in an island arc geotectonic setting during the middle Eocene while Mo-bearing deposits are coincident with the
crustal thickening during Oligocene. We introduce new trace element and isotope geochemical data for granitoids and
structural evidences testifying the two-sided asymmetric subduction beneath both Afghan and Lut Blocks, with different
rates of consumption of oceanic lithosphere
Contractional kink bands formed by stress deflection along pre-existing anisotropies? Examples from the Anglo-Brabant Deformation Belt (Belgium) and the North Dobrogea Orogen (Romania)
Emplacement of sandstone intrusions during contractional tectonics
Acknowledgments We acknowledge the support of sponsoring companies of Phase 3 of the Sand Injection Research Group (SIRG). We are very grateful to John Waldron and Jessica Ross for the constructive reviews of the manuscript. We also wish to thank and acknowledge the continuing help and access provided by the Bureau of Land Management.Peer reviewedPostprin
- …
