3 research outputs found

    Generate optimal number of features in mobile malware classification using Venn diagram intersection

    Get PDF
    Smartphones are growing more susceptible as technology develops because they contain sensitive data that offers a severe security risk if it falls into the wrong hands. The Android OS includes permissions as a crucial component for safeguarding user privacy and confidentiality. On the other hand, mobile malware continues to struggle with permission misuse. Although permission-based detection is frequently utilized, the significant false alarm rates brought on by the permission-based issue are thought to make it inadequate. The present detection method has a high incidence of false alarms, which reduces its ability to identify permission-based attacks. By using permission features with intent, this research attempted to improve permission-based detection. However, it creates an excessive number of features and increases the likelihood of false alarms. In order to generate the optimal number of features created and boost the quality of features chosen, this research developed an intersection feature approach. Performance was assessed using metrics including accuracy, TPR, TNR, and FPR. The most important characteristics were chosen using the Correlation Feature Selection, and the malicious program was categorized using SVM and naive Bayes. The Intersection Feature Technique, according to the findings, reduces characteristics from 486 to 17, has a 97 percent accuracy rate, and produces 0.1 percent false alarms

    Battlefield malware and the fight against cyber crime

    Get PDF
    Relatório apresentado à Universidade Fernando Pessoa como parte dos requisitos para o cumprimento do programa de Pós-Doutoramento em Ciências da InformaçãoOur cyber space is quickly becoming over-whelmed with ever-evolving malware that breaches all security defenses, works viciously in the background without user awareness or interaction, and secretly leaks of confidential business data. One of the most pressing challenges faced by business organizations when they experience a cyber-attack is that, more often than not, those organizations do not have the knowledge nor readiness of how to analyze malware once it has been discovered on their production computer networks. The objective of this six months post-doctoral project is to present the fundamentals of malware reverse-engineering, the tools and techniques needed to properly analyze malicious programs to determine their characteristics which can prove extremely helpful when investigating data breaches. Those tools and techniques will provide insights to incident response teams and digital investigation professionals. In order to stop hackers in their tracks and beat cyber criminals in their own game, we need to equip cyber security professionals with the knowledge and skills necessary to detect and respond to malware attacks. Learning and mastering the inner workings of malware will help in the fight against the ever-changing malware landscape.N/

    Intrusion detection system for IoT networks for detection of DDoS attacks

    Get PDF
    PhD ThesisIn this thesis, a novel Intrusion Detection System (IDS) based on the hybridization of the Deep Learning (DL) technique and the Multi-objective Optimization method for the detection of Distributed Denial of Service (DDoS) attacks in Internet of Things (IoT) networks is proposed. IoT networks consist of different devices with unique hardware and software configurations communicating over different communication protocols, which produce huge multidimensional data that make IoT networks susceptible to cyber-attacks. The network IDS is a vital tool for protecting networks against threats and malicious attacks. Existing systems face significant challenges due to the continuous emergence of new and more sophisticated cyber threats that are not recognized by them, and therefore advanced IDS is required. This thesis focusses especially on the DDoS attack that is one of the cyber-attacks that has affected many IoT networks in recent times and had resulted in substantial devastating losses. A thorough literature review is conducted on DDoS attacks in the context of IoT networks, IDSs available especially for the IoT networks and the scope and applicability of DL methodology for the detection of cyber-attacks. This thesis includes three main contributions for 1) developing a feature selection algorithm for an IoT network fulfilling six important objectives, 2) designing four DL models for the detection of DDoS attacks and 3) proposing a novel IDS for IoT networks. In the proposed work, for developing advanced IDS, a Jumping Gene adapted NSGA-II multi-objective optimization algorithm for reducing the dimensionality of massive IoT data and Deep Learning model consisting of a Convolutional Neural Network (CNN) combined with Long Short-Term Memory (LSTM) for classification are employed. The experimentation is conducted using a High-Performance Computer (HPC) on the latest CISIDS2017 datasets for DDoS attacks and achieved an accuracy of 99.03 % with a 5-fold reduction in training time. The proposed method is compared with machine learning (ML) algorithms and other state-of-the-art methods, which confirms that the proposed method outperforms other approaches.Government of Indi
    corecore