8,431 research outputs found

    Structural matching by discrete relaxation

    Get PDF
    This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter

    Constrained Signaling in Auction Design

    Full text link
    We consider the problem of an auctioneer who faces the task of selling a good (drawn from a known distribution) to a set of buyers, when the auctioneer does not have the capacity to describe to the buyers the exact identity of the good that he is selling. Instead, he must come up with a constrained signalling scheme: a (non injective) mapping from goods to signals, that satisfies the constraints of his setting. For example, the auctioneer may be able to communicate only a bounded length message for each good, or he might be legally constrained in how he can advertise the item being sold. Each candidate signaling scheme induces an incomplete-information game among the buyers, and the goal of the auctioneer is to choose the signaling scheme and accompanying auction format that optimizes welfare. In this paper, we use techniques from submodular function maximization and no-regret learning to give algorithms for computing constrained signaling schemes for a variety of constrained signaling problems

    Accuracy of simulations for stochastic dynamic models

    Get PDF
    This paper provides a general framework for the simulation of stochastic dynamic models. Our analysis rests upon a continuity property of invariant distributions and a generalized law of large numbers. We then establish that the simulated moments from numerical approximations converge to their exact values as the approximation errors of the computed solutions converge to zero. These asymptotic results are of further interest in the comparative study of dynamic solutions, model estimation, and derivation of error bounds for the simulated moments
    • …
    corecore