4 research outputs found

    Person Re-identification with Deep Similarity-Guided Graph Neural Network

    Full text link
    The person re-identification task requires to robustly estimate visual similarities between person images. However, existing person re-identification models mostly estimate the similarities of different image pairs of probe and gallery images independently while ignores the relationship information between different probe-gallery pairs. As a result, the similarity estimation of some hard samples might not be accurate. In this paper, we propose a novel deep learning framework, named Similarity-Guided Graph Neural Network (SGGNN) to overcome such limitations. Given a probe image and several gallery images, SGGNN creates a graph to represent the pairwise relationships between probe-gallery pairs (nodes) and utilizes such relationships to update the probe-gallery relation features in an end-to-end manner. Accurate similarity estimation can be achieved by using such updated probe-gallery relation features for prediction. The input features for nodes on the graph are the relation features of different probe-gallery image pairs. The probe-gallery relation feature updating is then performed by the messages passing in SGGNN, which takes other nodes' information into account for similarity estimation. Different from conventional GNN approaches, SGGNN learns the edge weights with rich labels of gallery instance pairs directly, which provides relation fusion more precise information. The effectiveness of our proposed method is validated on three public person re-identification datasets.Comment: accepted to ECCV 201

    ANALYZING PULMONARY ABNORMALITY WITH SUPERPIXEL BASED GRAPH NEURAL NETWORKS IN CHEST X-RAY

    Get PDF
    In recent years, the utilization of graph-based deep learning has gained prominence, yet its potential in the realm of medical diagnosis remains relatively unexplored. Convolutional Neural Network (CNN) has achieved state-of-the-art performance in areas such as computer vision, particularly for grid-like data such as images. However, they require a huge dataset to achieve top level of performance and challenge arises when learning from the inherent irregular/unordered nature of physiological data. In this thesis, the research primarily focuses on abnormality screening: classification of Chest X-Ray (CXR) as Tuberculosis positive or negative, using Graph Neural Networks (GNN) that uses Region Adjacency Graphs (RAGs), and each superpixel serves as a dedicated graph node. For graph classification, provided that the different classes are distinct enough GNN often classify graphs using just the graph structures. This study delves into the inquiry of whether the incorporation of node features, such as coordinate points and pixel intensity, along with structured data representing graph can enhance the learning process. By integration of residual and concatenation structures, this methodology adeptly captures essential features and relationships among superpixels, thereby contributing to advancements in tuberculosis identification. We achieved the best performance: accuracy of 0.80 and AUC of 0.79, through the union of state-of-the-art neural network architectures and innovative graph-based representations. This work introduces a new perspective to medical image analysis

    Structural image classification with graph neural networks

    Full text link
    Many approaches to image classification tend to transform an image into an unstructured set of numeric feature vectors obtained globally and/or locally, and as a result lose important relational information between regions. In order to encode the geometric relationships between image regions, we propose a variety of structural image representations that are not specialised for any particular image category. Besides the traditional grid-partitioning and global segmentation methods, we investigate the use of local scale-invariant region detectors. Regions are connected based not only upon nearest-neighbour heuristics, but also upon minimum spanning trees and Delaunay triangulation. In order to maintain the topological and spatial relationships between regions, and also to effectively process undirected connections represented as graphs, we utilise the recently-proposed graph neural network model. To the best of our knowledge, this is the first utilisation of the model to process graph structures based on local-sampling techniques, for the task of image classification. Our experimental results demonstrate great potential for further work in this domain. © 2011 IEEE
    corecore