
University of South Dakota University of South Dakota

USD RED USD RED

Dissertations and Theses Theses, Dissertations, and Student Projects

2023

ANALYZING PULMONARY ABNORMALITY WITH SUPERPIXEL ANALYZING PULMONARY ABNORMALITY WITH SUPERPIXEL

BASED GRAPH NEURAL NETWORKS IN CHEST X-RAY BASED GRAPH NEURAL NETWORKS IN CHEST X-RAY

Ronaj Pradhan

Follow this and additional works at: https://red.library.usd.edu/diss-thesis

 Part of the Computer Sciences Commons

https://red.library.usd.edu/
https://red.library.usd.edu/diss-thesis
https://red.library.usd.edu/studentwork
https://red.library.usd.edu/diss-thesis?utm_source=red.library.usd.edu%2Fdiss-thesis%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=red.library.usd.edu%2Fdiss-thesis%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages

ANALYZING PULMONARY ABNORMALITY WITH SUPERPIXEL BASED

GRAPH NEURAL NETWORKS IN CHEST X-RAY

By

Ronaj Pradhan

B.E., Tribhuvan University, 2018

 A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of Master of Science

Department of Computer Science

Master of Science Program

In the Graduate School

The University of South Dakota

December 2023

i

DocuSign Envelope ID: 8E424F38-97CF-408C-8520-0BE4E68744D9

COMMITTEE SIGNATURE PAGE

The members of the Committee appointed to examine

the Thesis of Ronaj Pradhan

find it satisfactory and recommend that it be accepted.

 C ha i r pe r s on

ii

DocuSign Envelope ID: B97441E5-0263-4E66-9627-1D6204FAAEDE

ABSTRACT

In recent years, the utilization of graph-based deep learning has gained prominence, yet its

potential in the realm of medical diagnosis remains relatively unexplored. Convolutional Neural

Network (CNN) has achieved state-of-the-art performance in areas such as computer vision,

particularly for grid-like data such as images. However, they require a huge dataset to achieve top

level of performance and challenge arises when learning from the inherent irregular/unordered

nature of physiological data. In this thesis, the research primarily focuses on abnormality

screening: classification of Chest X-Ray (CXR) as Tuberculosis positive or negative, using Graph

Neural Networks (GNN) that uses Region Adjacency Graphs (RAGs), and each superpixel serves

as a dedicated graph node. For graph classification, provided that the different classes are distinct

enough GNN often classify graphs using just the graph structures. This study delves into the

inquiry of whether the incorporation of node features, such as coordinate points and pixel intensity,

along with structured data representing graph can enhance the learning process. By integration of

residual and concatenation structures, this methodology adeptly captures essential features and

relationships among superpixels, thereby contributing to advancements in tuberculosis

identification. We achieved the best performance: accuracy of 0.80 and AUC of 0.79, through the

union of state-of-the-art neural network architectures and innovative graph-based representations.

This work introduces a new perspective to medical image analysis. The code is available in the

2AI-lab’s GitHub repository: https://github.com/2ai-lab/Superpixels-in-graph-neural-network.

 Thesis advisor:

 KC Santosh, Ph.D.

iii

ACKNOWLEDGEMENTS

I extend my deepest gratitude to my thesis advisor, Dr. KC Santosh, whose expert guidance, and

unwavering support were instrumental in the completion of this thesis. Without his invaluable

mentorship, this work would not have been realized. I also wish to acknowledge the contributions

of the other esteemed members of my thesis committee, Dr. Doug Goodman, Dr. Rodrigue Rizk

and Dr. William Chen. Their active involvement and assistance throughout this process have been

highly appreciated. Furthermore, I would like to express my heartfelt thanks to the entire 2AI lab

2022 - 2023 team for their valuable assistance and support during the thesis writing journey. Your

collective contributions have been indispensable, and I am truly thankful for your involvement in

this academic endeavor.

iv

DEDICATION

I humbly dedicate this thesis to my parents, whose unwavering support has been the cornerstone

of my educational journey. Their continuous encouragement has not only provided me with a

secure living environment but has also been an invaluable source of emotional sustenance. Their

profound influence has been instrumental in shaping the person I am today.

v

TABLE OF CONTENTS

COMMITTEE SIGNATURE PAGE ... i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

DEDICATION ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES .. vii

LIST OF ILLUSTRATIONS ... viii

1. Introduction ... 1

1.1. Background and Problem Statement ...1

1.2. Motivation ...2

1.3. Goal ...2

1.4. Contribution ..3

1.5. Thesis outline ..3

2. Literature Review .. 5

2.1. Background ...5

2.2. Graph Neural Networks ..6

 Basics: GNN ... 6

 Convolutional Architectures .. 9

 Attention Architectures ... 11

 Readout Layer ... 12

2.3. Image Segmentation ..12

 Related Works ... 13

 Superpixel Algorithm ... 14

3. Superpixel-based GNN (Implementation) ... 16

3.1. Data Preprocessing ..16

3.2. Superpixel Generation ...19

vi

3.3. Image as graph ..22

3.4. Graph Representation ..24

3.5. Graph as Dense Data Structures ..26

3.6. Superpixel-based GNN ...27

 Input Layer ...28

 GNN Layer...29

 Prediction Layer ...33

4. Experiments ... 34

4.1. Experimental Setup ...34

4.2. Results and Analysis ...37

4.3. Comparision ..41

5. Conclusion and Future Work... 43

BIBLIOGRAPHY ... 45

vii

LIST OF TABLES

Table 1 Dataset Summary ... 16

Table 2 Superpixel Data Summary ... 19

Table 3 Performance evaluation result of the four datasets LUNGS_75, LUNGS_200,

LUNGS_300, and LUNGS_400 with respective models GCN and GAT with two different node

embeddings. .. 38

Table 4 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_75

dataset. .. 41

Table 5 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_200

dataset. .. 41

Table 6 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_300

dataset. .. 42

Table 7 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_400

dataset. .. 42

viii

LIST OF ILLUSTRATIONS

Figure 1 Convolutional Architecture [22]. .. 11

Figure 2 Attention Architecture [38]. ... 12

Figure 3 Chest X-ray from samples, one per dataset (left to right): Montgomery County (USA),

Shenzhen (China). ... 17

Figure 4 Chest X-ray mask from samples, one per dataset (left to right): Montgomery County

(USA), Shenzhen (China). .. 17

Figure 5 Chest X-ray segmented dataset obtained from Belarus Dataset 18

Figure 6 Chest X-ray Region of Interest (ROI) obtained after overlaying mask of the lungs onto

the chest X-ray image, one per dataset (left to right): Montgomery County (USA), Shenzhen

(China) and Belarus. ... 19

Figure 7 Segmented CXR images obtained through SLIC segmentation, varying the value of “k”

to obtain superpixels with different range of node values. ... 21

Figure 8 Histogram showing number of nodes and their count in Train set, Test set and Validation

Set for LUNGS_75 dataset. .. 23

Figure 9 Histogram showing a number of nodes and their count in Train set, Test set and Validation

Set for LUNGS_200 dataset. .. 23

Figure 10 Histogram showing a number of nodes and their count in Train set, Test set and

Validation Set for LUNGS_300 dataset. .. 23

Figure 11 Histogram showing a number of nodes and their count in Train set, Test set and

Validation Set for LUNGS_400 dataset. .. 24

Figure 12 Visualizing data conversion (left to right): lung segmentation, superpixel nodes

(centroids) with SLIC, connectivity (only coordinate) of graph representation with 75/200/300/400

nodes, and connectivity (feature and coordinate) of the graph represent with 75/200/300/400

nodes. .. 26

Figure 13 Workflow of graph neural network layer in the classification of TB positive and TB 28

Figure 14 A generic graph neural network layer. Adapted from Bresson and Laurent [39]. 29

Figure 15 GCN Layer ... 30

Figure 16 GAT layer ... 32

ix

Figure 17 GCN Net Architecture .. 35

Figure 18 GAT Net Architecture .. 36

Figure 19 Graphical representation of GCN (Coordinate only): ACC, AUC, SPE, SEN 39

Figure 20 Graphical representation of GAT (Coordinate only): ACC, AUC, SPE, SEN 39

Figure 21 Graphical representation of GCN (Coordinate and pixel intensity): ACC, AUC, SPE,

SEN ... 40

Figure 22 Graphical representation of GAT (Coordinate and pixel intensity): ACC, AUC, SPE,

SEN ... 40

1

CHAPTER 1

1. Introduction

Summary: This chapter introduces the research on Tuberculosis, covering its historical context,

motivation, and goals. It emphasizes the global impact of TB and the challenges in rapid detection,

highlighting the importance of Chest X-Ray and exploring the potential of Graph Neural

Networks. The chapter outlines the thesis's objectives, focusing on CXR image segmentation and

GNN application methodology, setting the stage for the experimental exploration of GNNs in TB

diagnosis.

Key topics: Motivation, goal, and methodology.

1.1. Background and Problem Statement

Tuberculosis (TB) has been intertwined with our species for millennia, potentially spanning

several million years and has been an enduring human affliction [1]. Manifestation of TB in the

lungs cause gradual degradation in health over a long period of time, with exhaustion, fatigue,

airflow obstruction, chronic cough, chest pains, fever and even death in the later stages of sickness.

One-third of the world’s population harbors the bacterial infection Mycobacterium Tuberculosis

(MTB), responsible for human affliction, with the annual tally of new TB cases exceeding 9

million [2]. Despite recent progress made in diagnostic and treatment methods, the worldwide

impact of TB remains distressingly high, with 10 million individuals infected and 1.4 million lives

lost to the disease in 2019 [3]. The correlation between poverty and TB is well recognized, high

rates and frequent occurrence due to overcrowding, poor ventilation and poor hygiene increase the

risk of transmission of the disease. Detecting the presence of TB is a crucial task, that requires

expert medical practitioners and equipment. However, with a third of the world’s population

infected, rapid screening and identification of TB is a difficult and expensive deal. Regardless of

the advanced screening options individuals lose their life as the result of late detection of TB. On

the other hand, encouragingly, this bacterial disease can be effectively treated and cured through

consequent administration of proper medication and screening methods. Between cure and

identification of TB lies a bridge which can be shortened to avoid untimely deaths and instigate

the process to accurately identify and diagnose TB.

Lung abnormality screening through Chest X-Ray (CXR) is a vital diagnostic tool, enabling early

detection and intervention for various pulmonary conditions. This noninvasive imaging technique

has enabled identifying clinical manifestations in the lungs which in turn has improved healthcare

outcomes [4]. TB can be visually identified and characterized in CXR through various radiological

features such as cavities, opacities, edges, colors, thickening, contours, and orientations which are

required for decision making, in the case of expert practitioner as well as Computer Aided

2

Diagnosis (CAD) [5][6][7]. Automated radiological screening, algorithms and predictive models

have been advancing to detect abnormalities in CXR [8]. Furthermore, the incorporation of Deep

Learning (DL) approach such as Convolutional Neural Network (CNN), with CAD has made an

effective breakthrough as a potent strategy for mass screening pulmonary TB via the analysis of

CXRs[9][10]. Rendering radiologist and medical practitioners obsolete particularly in regions with

few of them.

Even though we have rich state-of-the-art literature for pulmonary abnormality screening using

CNN with different models and CXRs, they require a large dataset for such achievements. Given

the scarcity of medical datasets, it raises the question of whether it is feasible to create models that

demand a small amount of data while still maintaining a high level of performance. We explore an

alternative perspective that has yet to be thoroughly investigated, the incorporation of GNN

presents a promising avenue for addressing the existing problem. By representing images as

graphs, this novel approach offers the potential to establish a more comprehensive data framework

that capitalizes on the inherent graph structure within the data. This unique methodology holds the

promise of advancing enhanced learning capabilities and delivering outcomes through a distinct

and potentially more effective data structure.

1.2. Motivation

The motivation for exploring an alternative methodology and data-structure in classifying TB-

positive and TB-negative cases stems from the substantial dataset requirements required in training

existing state-of-the-art network models. There is an evident gap in the current diagnostic

landscape, with the need of huge CXR images to train models for classifying the medical

images[11]. As the diagnostic landscape undergoes an evolution, with the advent of new

technologies, most graph-based problem-solving applications have been mostly concentrated on

areas such as link prediction, bioinformatics, categorizing documents and recommender system.

However, graph-structures are prominent in the real world and by leveraging this richer data

structure, we want to experiment whether an image represented as a graph can represent more

information within an image.

On a personal level, I am driven by a profound desire to venture into new avenues of research, on

how pulmonary abnormalities in CXR images could be analyzed through superpixel-based graph

neural networks. The prospect of harnessing graph-based learning and graph-structure to enhance

the diagnosis of TB and play a pivotal role in the ongoing battle against disease serves as a source

of motivation, driving me to commit my research endeavors to this cause.

1.3. Goal

The goal of this thesis is to experiment with new ideas centered around the segmentation of CXR

images into groupings of pixels with shared color and other fundamental attributes, giving rise to

3

what are commonly referred to as ‘superpixels’ which are the basis of the construction of a graph

structure. This approach is to facilitate image classification, by harnessing the potential of GNNs,

and give the audience insights and outcomes that hold promise for enhancing the interpretation of

medical images in a novel and impactful manner. As such, we hope to experimentally examine the

effects of different graph structures on GNNs as well as find how graph structures could aggregate

information through convolutional architectures and attention architectures, using GNNs.

1.4. Contribution

The accuracy of disease identification relies on data exploration and investigation using CXR

scans, crucial for TB classification research. We utilize datasets sourced from publicly available

databases[12][13], including CXR scans and lung boundaries outlined by expert radiologists. It is

noteworthy that, out of the total dataset comprising of 811 CXR images, 359 are labeled TB-

positive and 452 are deemed TB-negative.

For graph data creation, we employ the SLIC algorithm, dividing images into superpixels based

on pixel similarity and proximity. A Region Adjacency Graph (RAG) is constructed for datasets

containing 75, 200, 300, and 400 superpixels. These datasets serve as nodes for subsequent

analysis via Graph Neural Network (GNN) models.

Two GNN models: Graph Convolutional Network (GCN) and Graph Attention Network (GAT)

are employed to perform deep learning tasks on graph-structured data. Both models are designed

for node classification, link prediction and graph classification but have distinct differences in their

architecture and mechanisms.

Out of the two GNN models used, the GCN architecture comprised an initial embedding layer with

two node features (pixel intensity and coordinates) or one (coordinates) along with edge

connections between the nodes. This is followed by 4 layers of GCN layers stacked, each with 146

input and output channels. A readout layer, consisting of a Multi-Layer Perceptron (MLP) and a

mean operation, is used for graph classification. In our case, we employ a mean readout layer

consisting of three linear layers, ultimately classifying them into two categories. Similarly, the

GAT architecture also starts with an embedding layer and is followed by 4 GAT layers, each with

152 input and output channels. Each GAT layer is accompanied by a LeakyReLU activation

function, batch normalization, and a mean readout layer.

1.5. Thesis outline

The remainder of this thesis is structured as follows:

• Chapter 2: Description of related papers, research reports and articles about image

segmentation, processing image data into graph domain, graph neural network, its types, and

architectures.

4

• Chapter 3: Introduction to the dataset used in our experiment.

• Chapter 4: Explanation about the implementation of representing images as graph, superpixel

generation, datasets with varying superpixel and network models.

• Chapter 5: Experimental setup, results and analysis are described in this chapter.

• Chapter 6: Talks about conclusion and future work.

5

CHAPTER 2

2. Literature Review

Summary: This chapter contains an overview of related works in the direction of GNN their

background and brief description of convolutional architectures and attention architecture in GNN,

brief literature review of image segmentation, graph representation and superpixel algorithm.

Key topics: Image Segmentation, Superpixel, Introductory works, convolutional architectures,

attention architectures.

2.1. Background

In computing, an image is essentially a two-dimensional array of pixels, where each pixel

corresponds to a specific location in the image and embodies a distinct color. The expression of

these colors is articulated through numerical values, employing established color models like RGB

(red, green, blue) and HSV (hue, saturation, value). For example, in the RGB color mode, a pixel

is a 3-tuple of (R, G, B) where each value ranges from 0 to 255.

An essential and foundational undertaking in computer vision involves image classification,

wherein the objective is to assign labels to a set of pixels, categorizing them into specific groups.

Despite its simplicity for humans, this task has posed a persistent challenge for computers. CNNs

have emerged as a highly effective method for image classification, demonstrating notable success

in addressing this computational challenge. The CNN was first introduced with the LeNet Model,

which demonstrated its capabilities in classifying handwritten characters [14]. However, CNN

began solidifying its presence as a highly successful technique for image classification after

ImageNet Large Scale Visual Recognition Challenge [15] in 2012 using a deep learning approach.

There have been experiments with different iterations and variations of these models ever since.

GNNs constitute a segment within the broader domain known as geometric deep learning [16] .

Geometric deep learning focuses on extending successful deep learning methodologies to non-

Euclidean data structures, such as graphs and manifolds. The motive behind this stems from the

accomplishments of established deep learning techniques, including CNNs and the prevalence of

data formatted as graphs and manifolds. The existing shortfall of effective deep learning

techniques directly applicable to such non-Euclidean data further motivates exploration in this

domain. GNNs specifically pertain to the application of geometric deep learning principles to

graph data.

6

2.2. Graph Neural Networks

 Basics: GNN

The utilization of neural networks on graph data requires the models to effectively handle graph

matrix representations, such as adjacency matrices. Moreover, these models must exhibit

invariance to input permutation, ensuring that the network can process the graph nodes in any

order. The primary objective of many GNN models is to acquire a node embedding for each node,

a process that may involve multiple layers and diverse types of layers. Ultimately, these node

embeddings are aggregated for graph classification, forming a comprehensive graph embedding.

While much of the existing research on GNNs has concentrated on node classification, these

architectures can readily be adapted for graph classification. This adaptation typically involves an

additional step of aggregating node embeddings and subsequently classifying the graph

embedding, often accomplished with an MLP.

The initial endeavors to extend neural networks to graph structures can be attributed to the work

of Scarselli et al. [17] [18][19]. Those works are a series by the same authors, with the most mature

models presented in [18], which is also referred to as vanilla GNN in literature. This model is

specifically designed for undirected homogeneous graphs, accommodating both node and edge

features. The model introduces the concept of learning node embeddings through a process called

message passing, where each node communicates its information (messages) to its neighbors. The

received information from neighbors is aggregated and utilized to update the node embedding.

This iterative process is performed multiple times, expanding the radius of information exchange

for each node. This is achieved by recursively applying the same set of weights until a stable state

has been reached. These first generation of GNNs are also known as Recurrent Graph Neural

Networks (RecGNN) [20].

The interest in non-Euclidean deep learning has recently surged in computer vision after the

seminal work of Bruna et al. [21] which it explores the potential generalizations of CNNs to signals

defined on more expansive domains without relying on the translational group’s action. Two novel

constructions are proposed: one based on hierarchical clustering of the domain which effectively

captures hierarchical structures within the signal and the other being spectrum of graph Laplacian

which enables the graph structure to train convolutional layers which is independent of the input

size. A significant advancement in the field was achieved by Kipf and Welling [22], who

introduced rudimentary filters designed to operate on 1-hop neighborhoods of a graph. These

filters incorporated a message passing mechanism to construct node representations, leveraging

the aggregation of local information from adjacent nodes.

GNNs have never been popular for image classification. Di Massa et al. [23] were among the early

researchers to transform images into graphs to conduct image classification using a GNN. This

undertaking was driven by an experimental motive to compare the efficacy of a recursive neural

7

network with that of a GNN when applied to graph-structured data. Their study utilized a subset

of the Caltech benchmark dataset Fergus et al. [24] ,comprising four distinct image classes

(bottles, camels, guitars, and houses). The primary objective was to observe whether the variance

in input data representation between recursive and graph neural networks had an impact on

performance in real-world applications. Expanding upon the groundwork laid by Di Massa et al.

[23] Quek et al. [25] assessed the effectiveness of a GNN, specifically on the model proposed by

Scarselli et al. [18], on diverse graphs derived from the same set of images. Their investigation

involved the creation and comparison of four distinct graphs: a 4-connected uniformly sampled

grid, an RAG, the minimum spanning tree (MST), and the Delaunay triangulation graph.

In the realm of image segmentation, Shi and Malik [26] undertook a pioneering endeavor by

directly applying graph-based techniques to images. They conceptualized each pixel as a distinct

graph node, intending to facilitate image segmentation. Despite the inherent potential of this

approach, the realization of precise segmentation outcomes proved to be a persistently challenging

task. An intermediary solution surfaced through the introduction of the concept of superpixels [27].

Superpixels involve the grouping of pixels that share similarities in color and other low-level

properties, such as spatial proximity, into perceptually meaningful representations [28]. These

over-segmented and simplified images, resulting from the superpixel process, find applicability

across various tasks in computer vision, including but not limited to image classification [29].

Monti et al. [30] pioneered the application of GNNs to the domain of image classification. Their

seminal contribution, the MoNET framework, was specifically designed to address geometric data,

featuring the integration of a scale factor to account for geometric distance during neighborhood

aggregation. In their initial experiments, the authors applied GNNs to the MNIST dataset [31],

where the images were preprocessed by segmenting them into superpixels for the subsequent

image classification task.

Avelar et al. [27] introduced RAG-GAT, a novel approach that involved segmenting input images

into superpixels and constructing an RAG by establishing connections between each region and

its neighbors. This RAG was then fed into a GAT. While RAG-GAT exhibited superior

performance compared to other GNN models on grayscale images, it faced challenges when

applied to three-channel RGB images. The diminished accuracy in the latter case was attributed to

the forced connection between adjacent areas, leading to the aggregation of unnecessary

information during the processing of RGB images.

Following this, Matthias et al. [32] introduced Spline CNN, which constitutes a graph

convolutional operator reliant on the B-spline kernel. This specialized operator was designed to

facilitate the extraction of graph features, thereby enabling the establishment of an end-to-end deep

GNN. The incorporation of the B-spline kernel in the graph convolution process underscored the

model's capacity to effectively capture and process intricate patterns within graph-structured data.

8

Ushasi et al. [33] employed a preprocessing strategy incorporating multi-scale superpixels for

image data. In this approach, the images underwent a multi-scale superpixel segmentation as an

initial step. Subsequently, the authors applied the GCN algorithm, as proposed by [22], within the

context of a Siamese graph convolutional network framework. This integrated model was

specifically crafted for image retrieval tasks, leveraging the benefits of multi-scale superpixel

preprocessing and the expressive power of the GCN algorithm to enhance the retrieval

performance in the realm of image analysis and retrieval.

Boris et al. [34] introduced a novel graph attention pooling technique and conducted a comparative

analysis with existing methods, including the Graph Isomorphism Network (GIN) [35] and GCN

on three datasets, two of which were self-generated to demonstrate attention and generalization in

GNN which were color, triangles, and the Mnist-75 dataset. The 75 in the Mnist-75 dataset refers

to the number of superpixels extracted from each image in the dataset. The study specifically

delved into evaluating the anti-noise capabilities and robustness of various pooling methods. This

assessment involved the introduction of random Gaussian noise to the Mnist-75 dataset, allowing

the researchers to gauge the performance of the graph attention pooling technique in the presence

of noise. Subsequently, in a related work, Boris et al. [36] proposed a Hierarchical Multigraph

Network (HMN). This innovative network architecture was designed to process superpixels at

different scales as input, aiming to amalgamate information from various granularities for

comprehensive image classification. By leveraging hierarchical structures and incorporating

information from superpixels of diverse scales, the HMN model demonstrated a holistic approach

to image classification, contributing to the advancement of techniques in the field.

In a more recent study, Dwivedi et al. [37] conducted a comprehensive comparison of various

contemporary GNNs including Graph Convolutional Networks (GCN) [22], Graph Attention

Networks [38], MoNet [30], Gated Graph Convolutional Networks [39], Graph Isomorphism

Networks [35] and GraphSage [40]. Their primary objective was to establish a framework for a

fair and systematic comparison of GNNs, involving evaluations across diverse datasets.

As part of this comprehensive evaluation, [37] specifically focused on image classification. They

transformed the CIFAR10 [41] and MNIST [31] datasets into graph representations, utilizing them

as baseline performance metrics. The underlying assumption was that GNNs would exhibit

proficiency in handling these datasets, rendering them suitable for use as a 'sanity-check' in the

evaluation process. This meticulous assessment aimed to discern the relative strengths and

weaknesses of different GNN architectures across varied datasets and contribute to a deeper

understanding of their applicability and performance characteristics.

9

 Convolutional Architectures

Convolutional Graph Neural Networks (ConvGNNs) have become increasingly popular in recent

years due to their efficiency, compositional convenience, and notable alignment with CNNs [20].

These architectures are broadly classified into spectral-based or spatial-based models, depending

on how graph convolution is defined, an inherently more intricate task for graphs than for images.

Spectral approaches within ConvGNNs draw inspiration from graph signal processing,

interpreting convolution to smooth the graph signal and effectively reduce noise [42]. These

methods rely on the eigen decomposition of the Laplacian matrix and utilize the graph Fourier

transform to manipulate the signal. This process involves convolving the signal in the spectral

(frequency) domain using adaptable and learnable filters.

In contrast, Spatial Convolutional Graph Neural Networks (ConvGNNs) bear a closer resemblance

to CNNs. They derive graph convolutions by considering a node's spatial relations, resembling

direct information propagation within the vertex neighborhood [20]. While this spatial approach

aims for computational efficiency (by avoiding eigen decomposition) and improved generalization

(independence from a specific eigen basis), articulating convolution for neighborhoods of varying

sizes while preserving local invariance presents significant challenges in this context.

One of the contributions in the field of ConvGNNs is detailed in [21], introducing the spectral

network architecture and fundamental principles associated with the spectral analysis of graphs.

This encompassed Laplacian eigen decomposition, interpreting convolution as a means of signal

smoothing, and integrating learnable localized filters featuring multiple channels. The work also

provided a spatial interpretation. Despite its pioneering nature, this initial endeavor faced

limitations [43] [20] primarily linked to the exact computation of graph eigendecomposition. Any

modification to the graph structure would influence the eigenbasis, leading to challenges in

stability and generalization. Moreover, these filters lacked spatial localization and the eigen

decomposition process itself posed a computational challenge with a complexity of O(n^3).

Subsequent works on spectral ConvGNNs sought to simplify the ideas from [21], introducing

approximations that not only reduced computational complexity but also enhanced regularization.

For instance, the work in [44] proposed the concept of approximating convolutional filters through

truncated expansion using a K-th order Chebyshev polynomial basis. ChebNet [45] implemented

this idea for ConvGNNs, offering the advantage of K-localized convolution, as it represented a K-

th order polynomial in the Laplacian. This allowed filters to extract local features independently

of graph size and eliminated the need for computing the entire eigenvectors of the Laplacian,

significantly reducing the computational burden. A more substantial simplification was presented

in the influential work [22] as the GCN. This architecture constrained the layer-wise convolution

to K = 1, addressing issues of overfitting on local neighborhood structures in graphs with wide

degree distributions. This first-order approximation gained popularity in ConvGNNs due to its

simplicity.

10

Spatial approaches define convolutions directly using the topological structure of the graph and

draw inspiration from the convolution operations performed in an Euclidean space, like those

employed in classical CNNs. In Euclidean convolution, the process can be conceptualized as a

weighted aggregation of function values. For instance, when applying convolution to an image

with a 3x3 kernel, the resulting value at a specific point in the image is derived from a weighted

sum of pixel values at that point and its eight surrounding pixels. Spatial methods endeavor to

emulate this convolutional process in the context of a graph. In the graph-based scenario, the value

at a node post-convolution, represented as a feature vector, is determined by a weighted

aggregation of the feature vectors belonging to its neighboring nodes, in conjunction with its own

feature vector. This mechanism ensures that information is propagated and aggregated across the

graph, capturing contextual dependencies like the spatial relationships considered in Euclidean

convolution on images.

The Neural Network for Graphs (NN4G) [46], introduced coincidentally with the conventional

GNN employs a compositional layered architecture to acquire and model graph dependencies. In

this architecture, the convolution operation directly assimilates the informational content from a

node's neighborhood. To enhance information flow and facilitate the integration of insights from

distinct layers, residual and skip connections are strategically incorporated. These connections

serve to harness information from various network depths, contributing to a more robust and

expressive representation of graph-based structures.

The Diffusion Convolutional Neural Network (DCNN) [47] conceives graph convolution as an

intricate diffusion process, here information flows between nodes guided by a defined transition

probability, ultimately reaching an equilibrium state that fosters a well-balanced distribution of

information. This process is designed to reach an equilibrium, facilitating a balanced distribution

of information. Furthermore, this approach captures the evolving information dynamics across the

graph during the diffusion process, providing a comprehensive representation. Diffusion Graph

Convolution (DGC) [48], however similar in concept diverges in its aggregation strategy by

summing up the outputs of each diffusion step instead of concatenating them. This is beneficial in

scenarios where immediate neighbors exhibit a great importance but implies limited contribution

from distant neighbors. Such limitation could be a drawback in applications characterized by

extensive dependency chains, such as those encountered in biological contexts.

11

Figure 1 Convolutional Architecture [22].

 Attention Architectures

The attention mechanism [49] [50] [51] serves as an adaptive weighting scheme within neural

networks, assigning higher weights to more important input features. This stands in contrast to

conventional convolutional architectures, where either identical contribution from neighbors to the

central node are assumed (as in GraphSAGE [40]), or predetermined weights are applied (as in

GCN [20]). A notable variant of attention is self-attention[50], frequently employed in GNNs. In

self-attention, input features attend to themselves, discerning and highlighting the most crucial

elements. Attentional architectures inherently possess a spatial nature, as they operate within the

node neighborhood to assess the significance of neighboring elements. This adaptive weighting

mechanism allows the model to dynamically focus on relevant information within the local

context, enhancing its ability to capture and leverage important features in a more nuanced and

context-aware manner compared to traditional convolutional approaches.

The GAT [38] introduces a self-attention mechanism, implemented as a single-layer feedforward

neural network, to assess and weight node neighbors. To enhance the learning process [43] and

augment model capacity [20], GAT incorporates multi-head attention [51], employing k

independent attention mechanisms in parallel. The outputs of these mechanisms are either

concatenated or averaged to produce the final node embedding.

This approach effectively addresses the challenge posed by varying node degrees, utilizing learned

weights to mitigate issues associated with wide node distributions. However, a notable drawback

lies in the potential for highly fluctuating predictions and elevated standard deviations due to the

inherent weighting mechanism [52].

Recognizing the limitation of GAT in maintaining conditioned rankings of attended nodes, the

authors [53] propose the GATv2 architecture. In GATv2, each node can attend to any other node,

offering increased resilience to structural noise, such as minor changes in the graph structure.

Interestingly, GATv2 achieves comparable or superior performance to the original GAT with

12

fewer attention heads. Notably, this structural enhancement incurs no additional computational

cost, preserving the computational efficiency and advantages of the original GAT.

Figure 2 Attention Architecture [38].

 Readout Layer

The readout layer performs a flat aggregation of node representations, condensing them into a

singular graph embedding vector. This process is alternatively referred to as global pooling [54],

global aggregation [35], or direct pooling [55]. In essence, the readout layer consolidates

information from individual nodes to construct a comprehensive and concise representation of the

entire graph. Fundamental and widely adopted readout techniques include mean, max, and sum

operations [54] [55]. These operations are typically applied as the final layer preceding an MLP.

Notably, according to findings in [35], the sum operation emerges as the most potent among the

three. The superiority of the sum operation lies in its capacity to discern certain structural patterns

in graphs that may elude detection by mean and max aggregators.

Alternatively, a weighted average can be employed, leveraging attention mechanisms to compute

weights. This variant, referred to as global (soft) attention[54][56], allows for a more nuanced

aggregation of node representations, with the attention weights serving as a mechanism to discern

the relative importance of individual nodes in contributing to the overall graph embedding.

2.3. Image Segmentation

Conventionally, images are depicted through a 3-dimensional tensor, capturing the RGB color

intensities of each pixel. This representation is integral to image classification using CNNs.

However, GNNs work with data organized as graphs, so they require a different representation

compared to the tensor used for images. Consequently, there arises the need to transform the tensor

representation of an image into a suitable graph structure for effective utilization within GNNs.

13

A natural representation of an image in a graph format involves treating each pixel as a node and

establishing edges to denote connections between pixels. These edges might be formed based on

proximity or they could connect pixels sharing similar color intensities. Moreover, nodes have the

flexibility to represent various aspects of an image; instead of individual pixels, they could

encapsulate a region of pixels [57]. The graph can take on various characteristics, including being

directed or undirected, and featuring edges with or without attributes. This diversity results in

multiple potential graph representations for an image, and the impact of these distinct

representations on the model remains uncertain. The choice of how to structure the graph

introduces a level of ambiguity, as the selection of nodes, edges, and their attributes could influence

the subsequent modeling outcomes.

 Related Works

Di Massa et al. [23] conducted experimentation utilizing both undirected and directed graphs.

Initially, undirected graphs, denoted as RAGs were generated. In these graphs, nodes corresponded

to homogeneous image regions, and edges were defined based on the adjacency relationships

between these regions. Nodes were endowed with attributes such as area and perimeter, while edge

attributes encapsulated mutual orientation and average color differences between the respective

regions. Subsequently, directed graphs, specifically directed acyclic graphs, were derived from the

RAGs by identifying the node containing the central pixel of the image. The edges in these directed

graphs were then directed based on the regions that were reachable from the central node. Notably,

the RAG was tailored for integration with GNNs, while the recursive neural network was designed

to operate on the directed acyclic graph. In terms of model performance, discerning the factors

contributing to the disparate outcomes between the GNN and the recursive neural network remains

an open question, necessitating further investigation to elucidate whether the observed differences

are attributable to inherent model characteristics, or the specific nuances of the graph structures

employed.

Quek et al. [25] specifically directed their attention towards comprehending the impact of diverse

graph structures on GNNs. Their investigation involved a comparative analysis of the performance

of a GNN, as proposed by Scarselli et al. [23] across four distinct graph configurations. These

configurations encompassed a 4-connected uniformly sampled grid, a Region Adjacency Graph

(RAG) proposed by Quek et al. [25], the Minimum Spanning Tree (MST) introduced by Prim [58]

, and the Delaunay triangulation graph pioneered by Delaunay et al. [59]

The construction of these graphs involved the initial delineation of regions of interest within an

image, each serving as a node. For the 4-connected grid, regions were defined as circles

encompassing every 16th pixel in both row and column directions. In the RAG, regions were

formulated utilizing the edge flow technique introduced by Ma and Manjunath [60]. In the case of

both the MST and the Delaunay triangulation graph, the Hessian-Laplace scale-invariant detector,

as proposed by Mikolajczyk et al.[61] , was employed to identify and create these regions.

14

After defining the regions, the establishment of edges followed a specific protocol for each graph

structure. In the 4-connected grid, regions were linked to those situated above, below, to the left,

and the right of a given region. In the RAG, edges were formed between adjacent regions. The

MST connected all nodes in a way that minimized a specified cost, where the cost was determined

by the Euclidean distance between the centers of regions [25]. Finally, the Delaunay triangulation

created connections between the central points of each region. This involved the generation of

triangles such that no point resided within the circumcircle connecting all corners of a triangle.

Across all graph structures, the node attributes encompassed the coordinates of the region's center,

the scale of the region, and a label assigned by a 128-dimensional scale-invariant feature transform

(SIFT) as introduced by Lowe [62] . Conversely, the edge attributes included the normalized

Euclidean distance between nodes, the normalized scale difference, and the normalized Euclidean

distance between the descriptors (SIFT).

Dwivedi et al. [37] initiated the graph creation process by segmenting an image into superpixels

through the employment of the SLIC technique developed by Achanta et al.[57]. These

superpixels, representing regions of homogeneous intensity, constituted the nodes of the graph.

The edges of the graph were subsequently established by connecting each node to its k nearest

neighbors, with k set to 8.

[23] [37] [25] employ diverse graph structures in their respective experiments, highlighting the

absence of a universally standardized method for constructing a graph from an image. To be more

specific, the impact of various graph structures on model performance remains uncertain, leaving

the question of which structures are more effective or less effective unanswered. This lack of

uniformity is anticipated, considering that the construction of a graph, modeling an image, allows

for flexibility and choice in the approach taken.

 Superpixel Algorithm

The term "superpixel" was introduced by X. Ren and J. Malik et al. [63]. The fundamental concept

involves the grouping of similar pixels into larger entities referred to as superpixels, thereby

establishing a more coherent representation of the image. Additionally, this process significantly

reduces the number of elements that subsequent image processing algorithms need to handle.

Superpixels represent a specific instance of image segmentation, a technique executed based on

intrinsic image features like color [64], texture [57], or edges [65].

There is no definitive set of criteria that must be met for a segmentation algorithm to qualify as a

superpixel algorithm, certain characteristics are commonly regarded as desirable. D. Stutz et al.

[28], such as partition, connectivity, boundary adherence, compactness, and controllable number

of superpixels. Spectral Linear Iterative Clustering (SLIC), introduced by Achanta et al. [57],

stands out as one of the widely embraced superpixel algorithms. This algorithm employs a

variation of k-means clustering to generate superpixels by emphasizing color similarities within

15

an image. In comparison to alternative algorithms existing at its introduction, SLIC demonstrates

commendable performance in terms of both segmentation quality and speed. Due to the algorithm's

inherent simplicity, numerous strategies have been proposed to enhance its performance. Instances

of such improvements include approaches like S-SLIC [66] and gSLIC [67], both of which

effectively facilitate real-time computation of SLIC superpixels. gSLIC demonstrates compelling

outcomes by achieving a notable acceleration of the fundamental SLIC algorithm, reaching up to

20 times faster performance through the implementation of hardware acceleration. An alternative

approach to superpixel segmentation is presented by Van den Bergh et al. in [68]. Their method,

known as Superpixels Extracted via Energy-Driven Sampling (SEEDS), can achieve real-time

performance by employing a coarse-to-fine strategy. The pixels undergo iterative assignment to

superpixels, optimizing a designated energy function that considers both the color and shape of

the superpixels. Notably, to maintain efficiency, the number of computations is minimized by

confining superpixel updates to border pixels. Inspired by SEEDS in [69] Yao et al. incorporated

an enhanced regularization term that leads to the creation of more uniformly shaped superpixels,

all while preserving high processing speed.

16

CHAPTER 3

3. Superpixel-based GNN (Implementation)

Summary: This section provides a thorough exploration of datasets used in this thesis and the

preprocessing steps required to transform Euclidean data, like images, into a graph structure. It

covers methodologies and associated hyperparameters for generating these graphs, with a specific

focus on the critical generation of superpixels at different levels. Additionally, the section delves

into the embedding layer, GNN layers, and prediction layer, offering insights into their

collaborative role in interpreting input data within the model. Overall, it serves as a comprehensive

guide to representing Euclidean data in graph structures, detailing methods, hyperparameters, and

crucial components in this transformative process.

Key Topics: Data Preprocessing, Superpixel generation, Graph representation, Embedding layer,

GNN layer, Prediction layer.

3.1. Data Preprocessing

Radiological imaging, such as CXR scans, plays a pivotal role in early detection and exploration

of diseases linked to the respiratory system. In this thesis, we explore a comprehensive dataset of

TB CXR images, that serves as a valuable resource for researchers and machine learning

practitioners. For our research, we curated our dataset from two publicly available and accessible

databases. The selection of these databases was driven by the need for reliable sources of medical

imaging data that align with the objectives of our study. By leveraging these databases, we aim to

ensure the robustness and credibility of our research outcomes in the context of TB detection and

diagnosis.

Table 1 Dataset Summary

Dataset Positive Set Negative Set Size in MB

Montgomery Set 58 80 38.9

Shenzhen Set 287 279 221

Belarus Set 107 - 5.66

Total 452 359 38.05

17

1) NLM Dataset: We opted to utilize the reputable National Library of Medicine (NLM) [13]

dataset which has made two datasets available for research in CAD of pulmonary disease

especially with a focus on pulmonary TB. This database was established through a collaborative

effort between the NLM and Shenzhen No.3 People’s Hospital, comprising two distinct sets of

CXR images: Montgomery County chest X-ray set (MC) and Shenzhen chest X-ray set. The

Montgomery County CXR dataset comprises 138 CXR derived from Montgomery County's TB

screening initiative. Within this dataset, there are 80 instances of normal CXR and 58 instances

revealing manifestations of TB. In contrast, the Shenzhen CXR dataset presents a more extensive

collection of 662 CXR, featuring 326 normal cases and 336 cases exhibiting TB manifestations.

Both datasets categorize patients into one of two distinct medical conditions: (a) a state of

normalcy or (b) the presence of TB-related manifestations. These datasets are enriched with

meticulously crafted gold-standard segmentations of the CXR, that were painstakingly generated

under the expert guidance of radiologists, ensuring a high level of precision, accuracy, and

reliability. For our case study, we have chosen to frame the problem as a binary classification task,

with a specific focus on distinguishing between two classes: (0) normal cases and (1) cases

displaying pulmonary TB manifestations. This approach simplifies the problem into a clear-cut

non-TB vs. TB classification, thereby facilitating a more focused and rigorous analysis and

interpretation of the data.

Figure 3 Chest X-ray from samples, one per dataset (left to right): Montgomery County (USA),

Shenzhen (China).

Figure 4 Chest X-ray mask from samples, one per dataset (left to right): Montgomery County

(USA), Shenzhen (China).

18

2) Belarus Dataset: The Belarus dataset [12] was compiled as part of a pivotal drug resistance

investigation, by the collaborative efforts of the National Institute of Allergy and Infectious

Diseases and the Ministry of Health in the Republic of Belarus. Every image within this distinctive

database was meticulously selected due to its affiliation with TB infection. The dataset

encompasses a total of 306 CXR images, derived from a cohort of 169 patients. It is important to

highlight that, despite the initial pool of images, a subset of 107 CXR images from the original

pool was ultimately incorporated into the study. This careful selection process was guided by the

availability of the dataset at that specific juncture.

Figure 5 Chest X-ray segmented dataset obtained from Belarus Dataset

In total, there are 811 total CXRs available with 359 CXRs manifested with TB and 452 normal

CXRs.

We have compiled a dataset comprising a total of 811 grayscale CXR images, each exhibiting

varying dimensions. These images were sourced from three distinct datasets: the Shenzhen dataset,

featuring dimensions of 3000 x 3000, the Montgomery dataset, characterized by dimensions of

4020 x 4892, and the Belarus dataset, which presented dimensions of 2248 x 2248. Each of these

CXR images has undergone annotation to indicate the presence or absence of TB, with binary

labels assigned as 0 for TB absence and 1 for TB presence. To enhance the dataset's utility, we

undertook a preprocessing phase that involved overlaying lung boundary masks onto the CXR

images, effectively outlining the region of interest (i.e., isolating the lung area within the CXR).

Furthermore, we uniformly resized all CXR images to a resolution of 512 x 512 pixels and applied

a superpixel algorithm to these images. This algorithm groups pixels into coherent regions, thereby

replacing the rigid pixel grid structure. This strategic approach enables the capture of more

meaningful image features, augmenting the overall image analysis process.

For the generation of superpixels within each image, we employed the SLIC algorithm [57]. These

superpixels were subsequently organized into five distinct sets, each featuring a different count of

superpixels, specifically 75, 200, 300, and 400. Each of these datasets has sizes of about 811 graphs

obtained from the 811 CXR images. This diverse range of superpixel counts provides multiple

options for subsequent analyses. In contrast to representing individual (512 x 512) pixels as nodes,

19

we have chosen to follow the approach outlined in [45] [38], where we experiment with the number

of superpixels to represent nodes and the edges between them. This methodology offers a more

adaptive and informative representation for the subsequent analysis of our dataset.

Figure 6 Chest X-ray Region of Interest (ROI) obtained after overlaying mask of the lungs onto

the chest X-ray image, one per dataset (left to right): Montgomery County (USA), Shenzhen

(China) and Belarus.

Table 2 Superpixel Data Summary

Dataset Number of Nodes Number of

Edges

Total Samples Size in MB

LUNGS_75 58 ≤ n ≤ 75 118 ≤ e ≤ 150 811 18.2

LUNGS_200 169 ≤ n ≤ 200 389 ≤ e ≤ 400 811 70.5

LUNGS_300 262 ≤ n ≤ 300 522 ≤ e ≤ 600 811 142

LUNGS_400 358 ≤ n ≤ 400 714 ≤ e ≤ 800 811 233

3.2. Superpixel Generation

There are many ways to generate graph structured data of images, in alignment with prior research

in this field, we employ the SLIC algorithm [57] to generate the superpixels in the image and

obtain good quality segmentations within a reasonable amount of time. The algorithm starts by

sampling several points in the image, placed with distance:

𝑆 = √𝑁/𝑘, (1)

where “N” and “k” represent the total number of pixels in the image and the desired quantity of

superpixels, respectively. Each of these points i.e., “S” is termed "superpixel centers," corresponds

to a designated superpixel in the resulting image. To establish these superpixel centers, an initial

placement is determined. The placement strategy involves selecting positions with the smallest

20

gradient values within a local 3x3 neighborhood for each superpixel center. This step is crucial in

preventing the initialization of superpixels along object edges. By relocating the superpixel centers

to positions characterized by minimal gradient values within their immediate surroundings, the

algorithm ensures that the superpixels are initiated away from high-gradient regions, typically

corresponding to object boundaries. This approach helps in achieving a more accurate and visually

coherent segmentation, as the superpixels are less likely to span across different objects or exhibit

irregular shapes along prominent edges.

Algorithm 1: SLIC superpixel segmentation

 /* Initialization */

Initialize cluster centers Ck = [lk,ak, bk, xk,yk]
T by sampling pixels at regular grid steps S.

 Move cluster centers to the lowest gradient position in a 3 X 3 neighborhood.

 Set label l(i) = -1 for each pixel i.

 Set distance d(i) = ∞ for each pixel i.

 repeat

1 for each cluster center Ck do

2 for each pixel i in a 2S X 2S region around Ck do

3 Compute the distance D between Ck and i.

4 if D < d(i) then

5 Set d(i) = D

6 Set l(i) = k

7 end if

8 end for

9 end for

10 Compute new cluster centers.

11 Compute residual error E.

12 until E ≤ threshold

Algorithm 1 summarizes the SLIC superpixels algorithm which uses a distance metric to determine

the similarity between pixels and cluster centers. The distance measure (D) is crucial in assigning

pixels to clusters. In SLIC, D is defined as a combination of color proximity (Dc) and spatial

proximity (Dc), normalized by their respective maximum distances within a cluster (Nc and Ns).

The color proximity (Dc) is calculated using the CIELAB color space, measuring the difference in

color values between pixels. The spatial proximity (Dc) accounts for the position of pixels in the

image plane, considering their x and y coordinates. To avoid inconsistencies in clustering behavior

for different superpixel sizes, Dc and Ds are normalized by their maximum distances within a

cluster. The final distance measure (D) is obtained, allowing for a balanced consideration of color

and spatial proximity in the formation of SLIC superpixels. This approach ensures that SLIC

superpixels adapt to both color and spatial characteristics in an image, leading to more meaningful

and context-aware segmentation results.

21

Figure 7 Segmented CXR images obtained through SLIC segmentation, varying the value of “k”

to obtain superpixels with different range of node values.

22

3.3. Image as graph

GNNs are specifically designed to operate on graph-structured data, where information is

represented as nodes and edges in a network. Generating a graph structure from other data types,

such as images, is essential when employing GNNs for several reason:

Modeling Relationships: GNNs excel in capturing relationships and dependencies within data.

By representing the data as a graph, one can explicitly model the connections and interactions

between different elements. This is particularly valuable when dealing with data where

relationships are not explicitly defined in a regular grid or sequence.

Non-Euclidean Data: GNNs are well-suited for handling non-Euclidean data, where the

relationships between elements do not adhere to a traditional geometric structure. Examples of

non-Euclidean data include social networks, molecular structures, or, as in our case, medical

images where pixel relationships might not follow a regular grid.

Incorporating Local Context: GNNs leverage the local neighborhood information of each node

to make predictions. By constructing a graph structure, you can capture the local context of each

element, allowing the model to consider the information from nearby nodes and edges.

Flexibility in Representation: Graph structures offer flexibility in representing complex

relationships and hierarchies in the data. This enables GNNs to capture intricate patterns that might

be challenging for other architectures.

In the context of CXR images, sourced [13] and [12], transforming the pixel-based image data into

a graph structure allows the GNN to exploit the inherent relationships between pixels, facilitating

the detection of abnormalities or patterns relevant to medical diagnosis.

This thesis primarily aims to investigate the correlation between the quantity of superpixels in an

image and the corresponding effectiveness of GNN models in accurately classifying CXR images

as either TB positive or TB negative. To achieve this objective, we curated four distinct datasets,

each characterized by a different number of superpixels (nodes). The datasets are denoted as

follows: LUNGS_75, LUNGS_200, LUNGS_300, and LUNGS_400. The nomenclature signifies

the varying number of superpixels employed in each dataset, achieved through the SLIC

segmentation technique.

Through the systematic experimentation on these diverse datasets, our objective is to uncover

complex patterns and trends in GNN performance, particularly in relation to the varying number

of superpixels. This research endeavors to yield valuable insights into optimal configurations that

enhance the GNN's efficiency in classifying CXR images as TB-positive or TB-negative. To

achieve this goal, we introduce variability in the number of superpixels across all five datasets.

This variation results in a spectrum of nodes for each dataset, where the maximum node value

adheres to a predefined set number, hence, the graphs are topologically different from each other.

23

This deliberate variation enables a comprehensive exploration of the impact of superpixel quantity

on GNN performance, providing insights into the relationship between image granularity and the

GNN's diagnostic capabilities in medical imaging. From the hierarchy of 75, 200, 300 and 400

SLIC superpixels the resultant graphs of the train set, test set, and validation set are formed with

each set having a varying number of nodes.

Figure 8 Histogram showing number of nodes and their count in Train set, Test set and

Validation Set for LUNGS_75 dataset.

Figure 9 Histogram showing a number of nodes and their count in Train set, Test set and

Validation Set for LUNGS_200 dataset.

Figure 10 Histogram showing a number of nodes and their count in Train set, Test set and

Validation Set for LUNGS_300 dataset.

24

Figure 11 Histogram showing a number of nodes and their count in Train set, Test set and

Validation Set for LUNGS_400 dataset.

3.4. Graph Representation

Following the superpixel segmentation process, we constructed a Region Adjacency Graph (RAG)

where each superpixel was treated as a node representing segmented regions within the image. The

relationships between nodes were established by considering their K-nearest neighbors,

encompassing more than one neighbor level to capture a broader context. In this graph, every node

has associated features that aggregate information derived from the inherent characteristics of the

corresponding superpixel. To generate node features, various methods can be employed. One

approach involves incorporating coordinate data, which includes the positional information of each

superpixel within the image. Moreover, positional information of the nodes is necessary to create

edges between nodes. This spatial information is valuable for understanding the arrangement and

distribution of segmented regions. Statistical attributes such as the mean of each superpixels

grayscale channels is included as a node feature. These statistical measures provide insights into

the intensity distribution and variability within each superpixel. By leveraging these diverse

features, the RAG becomes a rich representation of the image, encapsulating both spatial and

intensity-related information. This comprehensive graph structure serves as a foundation for

subsequent analysis, particularly in the context of GNN which can exploit these features to discern

patterns and relationships essential for accurate classification tasks, such as distinguishing between

TB-positive and TB-negative CXR images:

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 and 𝑥𝑖 = [
1

𝑁𝑖
∑(𝐼𝑗 , 𝑎𝑗 , 𝑏𝑗)

𝑇

𝑁𝑖

𝑗=1

] , (2)

where 𝑥𝑖 is the node feature with superpixel label i, 𝑁𝑖 is the number of pixels whose label is i, 𝐼𝑗is

the mean pixel intensity of superpixel, 𝑎𝑗 and 𝑏𝑗 is the pixel’s position (co-ordinate) in the image

and X is the combination of all feature vectors that would be present in the node.

The calculation of edge features between nodes involves determining the Euclidean distance

between the center of masses of the corresponding superpixels. This computation is facilitated by

25

employing a fixed-width Gaussian function. In the context of edge feature computation, this

Gaussian function is likely used to assign weights to edges based on the Euclidean distance

between the center of masses. The fixed width ensures a consistent influence of distance on the

weight assigned to the edge:

𝐺𝑖𝑗
𝐾 = exp (−

|𝑥𝑖 − 𝑥𝑗|
2

σ𝑥
2

) , (3)

where 𝑥𝑖, 𝑥𝑗 are the 2-D coordinates of superpixels i, j, and σ𝑥 is the scale parameter defined as

the averaged distance 𝑥𝑘 of the k nearest neighbors for each node and build adjacency matrix from

each sample.

We make an initial assumption that each pair of nodes in the graph can have at most one edge

connecting them. However, real-world data can be complex with nodes often having diverse

relationships that encompass various semantic, physical, or abstract aspects. There may be

additional relationships within the data that are not explicitly represented and could be captured

by relaxing the restriction on the number of edges between nodes, allowing for the inclusion of

multiple edges, beyond those predefined in the dataset. As depicted in Figure 4.2, once the original

image undergoes the SLIC segmentation, we initially extract the relevant features from the

resulting superpixel image. Provided that the features are not distinct when nodes rely solely on

coordinate information for connectivity, we employ a combination of both coordinates and pixel

intensity or just the coordinate point for establishing connections. This fusion serves as an effective

initialization strategy, providing clearer representation of the target structure within the graph.

26

Figure 12 Visualizing data conversion (left to right): lung segmentation, superpixel nodes

(centroids) with SLIC, connectivity (only coordinate) of graph representation with

75/200/300/400 nodes, and connectivity (feature and coordinate) of the graph represent with

75/200/300/400 nodes.

3.5. Graph as Dense Data Structures

Our hypothesis rests on the idea that a graph, as a representation, may offer a more robust and

informative model for an image than a tensor. In essence, an image serves as a repository of

27

information, and while tensors serve as a conventional means of representing such information,

they may not inherently capture all the intricate relationships within an image. On the other hand,

a graph representation introduces the concept of nodes and edges, allowing for a more detailed

depiction of an object and its connections to other elements in the image. In the context of an

image, nodes can signify individual components like pixels, and edges describe the relationships

between these components. This inclusion of relational information is a key differentiator from

tensors, which typically lack an explicit representation of relationships. The belief underlying our

hypothesis is that this explicit modeling of relationships in a graph provides a more comprehensive

understanding of an image, potentially resulting in improved representation and, subsequently,

enhanced performance in tasks such as image classification.

3.6. Superpixel-based GNN

There exists a variety of GNN architectures, given the accelerated growth in the area. However, it

poses the problem of which models to consider in our experiments. We chose the GNN model

based on the criteria of popularity and diversity which are frequently discussed and used in

literature. The diversity of models is important to better understand and explain the subsequent

results. This is the reason we selected GNNs from two different categories (spatial and spectral).

The models we use are Graph Convolutional Network (GCN) [22] and Graph Attention Network

(GAT) [38] which are relatively popular. We want to evaluate how convolution-based GNN and

attention-based GNN work on classifying CXR images. They are the different approaches for

aggregating information from neighboring nodes in a graph.

Convolution-based GNN methods are spectral methods that perform localized convolutions

mimicking CNNs, much like how CNNs use filters of different shapes to obtain the mean value of

the central pixel by aggregating information from neighboring pixels. In the spectral domain graph

structures are represented using eigenvectors of graph Laplacian matrix, which encodes the

information about the neighboring nodes in the graph. By building polynomials on the Laplacian,

we obtain the equivalent of filters in GNN that is applied to its own features and the features of its

neighbors to compute the weighted sum of the features, where weights are determined by the graph

structures (adjacency matrix). In most GCNs, the same weight matrix is shared across all the nodes

during the convolution operation. This weight sharing simplifies the model and is powerful in

capturing local patterns but hampers the adaptability to assign varying importance to neighbors

based on their relevant central nodes.

Attention mechanisms can be considered an additional learned weighing scheme, such that instead

of relying on fixed or predetermined weights for aggregating information from neighboring nodes,

attention mechanism assigns learnable attention coefficients to each neighbor dynamically. These

the attention coefficients are computed based on the compatibility or importance of each

neighbor’s features while downplaying the importance of less relevant ones. Most importantly, the

attention mechanism allows for node-specific weights where each node in the graph has its own

28

set of attention coefficients, providing a level of customization and adaptability that is absent in

plain convolutional mechanism. Attentional architectures are inherently spatial, as they operate on

a node neighborhood to assess the importance of neighbors.

Both the GCN and GAT models rely on a propagation module to facilitate information exchange

among nodes which is also known as message passing. As the information propagates through the

layers, each node refines its representation by considering the features of its neighbors, capturing

local and global patterns in the graph. The network model for GNN can be broken down into three

steps:

Figure 13 Workflow of graph neural network layer in the classification of TB positive and TB

Negative [70].

 Input Layer

In message-passing-based graph convolutional networks, the information encapsulated within a

node, including pixel intensity, coordinate points, and edge connections, undergoes a process of

exchange with neighboring nodes. This phenomenon, known as message passing, orchestrates the

iterative update of nodes across different layers. This update process can be formally expressed as

the transformation of node representations from one layer to the next as:

ℎ𝑖
𝑙+1 = 𝑓 [ℎ𝑖

𝑙, (ℎ𝑗
𝑙)

𝑗𝜖𝑁𝑖
] , (4)

where hi
l+1 is the updated node feature of layer hi

l and hj
l is node feature of the corresponding

neighbors of hi
l.

29

Each node in the graph is associated with node features, denoted as 𝛼𝑖 ∈ 𝑅𝑎 , where a is the

dimensionality of the node features. These attributes encapsulate diverse characteristics of the

node, ranging from pixel intensity and spatial coordinates to other pertinent information. In

addition to node features, there may be edges connection the nodes, and each edge can have

associated edge features denoted as 𝛽𝑖𝑗 ∈ 𝑅𝑏, where b is the dimensionality of the edge features.

These edge features could represent attributes associated with the connection between the nodes.

Before both the node features and edge features are fed into the GNN, they undergo a linear

transformation to project them into a lower-dimensional space. For node features and edge

features, this transformation is represented by a weight matrix 𝑊ℎ ∈ 𝑅𝑑𝑋𝑎 and 𝑊𝑒 ∈ 𝑅𝑑𝑋𝑏, where

d is the desired dimensionality of the hidden features. These linear transformations can be

represented as:

ℎ𝑖
0  =  𝑊ℎ𝛼𝑖  ;   𝑒𝑖𝑗

0   =  𝑊𝑒𝛽𝑖𝑗. (5)

 GNN Layer

In every GNN layer, we iteratively compute d-dimensional representations for both nodes and

edges in the graph. This process, known as neighborhood diffusion or message passing, involves

nodes gathering information from their neighboring nodes, allowing them to encapsulate and

represent the local structure of the graph. By stacking multiple GNN layers (denoted as L), the

network systematically constructs node representations that span information from nodes within L

hops away. Essentially, this stacking mechanism enables the network to progressively incorporate

details from nodes that are increasingly distant from each target node. This hierarchical approach

serves to capture both local and global graph structures, providing a comprehensive and nuanced

understanding of the graph's organization.

Figure 14 A generic graph neural network layer. Adapted from Bresson and Laurent [39].

30

As depicted in Figure 14, let hl
i represent the feature vector at layer l associated with node i. The

updated features hi
l+1 at the next layer l + 1 are derived by applying non-linear transformations to

the central feature vector hl
i and all the neighboring connected nodes j of node i. Equation 3 can

be regarded as the generalized form of the feature vector hi
l+1 at vertex i, where j € Ni denotes the

set of neighboring nodes, and f maps the input vector hl
i along with an unordered set of vectors

hl
i. The specific choice of the mapping function f defines the class of GNNs withing the network

architecture.

a. Graph Convolutional Network (GCN): In the simplest form of GNNs, referred to as Graph

Convolutional Networks (Graph CovnNets). The initial formulation involves isotropic averaging,

where each neighboring node’s contribution is given equal weight. The equation is expressed as:

ℎ𝑖
𝑙+1 = ReLU(W𝑙Mean𝑗ϵ𝑁𝑖

ℎ𝑗
𝑙), (6)

where Wl∈ RdXd is a matrix that updates node features through linear transform, Meanj∈Ni h
l
j

normalizes the averaging operation by the number of neighbors, it is also commonly known as

convolution as it approximates a localized spectral convolution. The ReLU activation function is

applied elementwise to the result of the linear transformation, introducing non-linearity to the

model.

Figure 15 GCN Layer

31

The GCN model proposed by Kipf and Welling [22] uses symmetric normalization instead of

isotropic averaging. Symmetric normalization involves dividing by the square root of the product

of the in-degree of the central and neighboring nodes, which results in the following node update

equation:

ℎ𝑖
𝑙+1 = ReLU (𝑊𝑙

1

√𝑑𝑒𝑔𝑖√degj

∑ ℎ𝑗
𝑙

𝑗ϵ𝑁𝑖

) , (7)

where degi is the in-degree of node i, and degj is the in-degree of the neighboring node j.

The node update equation involves linear transformation, isotropic averaging (or symmetric

normalization), ReLU activation, and the potential inclusion of self-loops or residual connections.

This formulation enables the model to capture information from the neighborhood of each node,

making it suitable for graph-structured data. The symmetric normalization variant addresses some

limitations of isotropic averaging, providing more stability in the learning process.

b. Graph Attention Network (GAT): In the GAT each pair of neighboring nodes engages in a

reciprocal attention mechanism, determining the significance of one another during the

information aggregation process. This intricate attention mechanism empowers nodes to

selectively concentrate on neighbors deemed more pertinent and informative for the specific task

at hand. Unlike conventional GCN with fixed weights serving as normalizing constants, GAT

introduces a dynamic paradigm. In GAT, attention weights are learned iteratively during training

rather than being predetermined, endowing the network with adaptability and the ability to capture

nuanced relationships within the graph. Notably, each node attends to itself, simulating a self-loop.

To strengthen expressive power, node features undergo a linear transformation into a higher-level

space before attention score computation. Post-transformation, attention scores are normalized

using the SoftMax function, creating a probability distribution for each node. This dynamic and

learned attention mechanism fosters flexibility and expressiveness, allowing nodes to

autonomously prioritize neighbors. This intrinsic adaptability contributes to the overall spatial

nature characteristic of attentional GNNs.

32

Figure 16 GAT layer

GAT uses Bahdanau attention [49] also known as the additive score function to introduce

anisotropy in the neighborhood aggregation function. Anisotropy refers to the introduction of

directionality or orientation in the neighboring aggregation, which makes the model sensitive to

the directional relationship between the nodes. Nodes can selectively attend to neighbors with

varying degrees of emphasis, capturing directional information in the graph. The node update

equation is given by:

ℎ𝑖
𝑙+1 = Concat𝑘=1

𝐾 (ELU (∑ 𝑒𝑖𝑗
𝑘,𝑙𝑊𝑘,𝑙

𝑗ϵ𝑁𝑖

, ℎ𝑗
𝑙)) , (8)

where W k,l ∈ Rd/K x d are the K linear projection heads, the use of multi-head attention is aimed at

stabilizing the learning process and enhancing the model's ability to capture diverse and complex

relationships in the graph. The idea of multi-head attention involves employing multiple attention

mechanisms, in parallel. These heads operate independently and can either be concatenated or

averaged to produce the final output. The attention coefficients for each head are defined as:

𝑒𝑖,𝑗
𝑘,𝑙 =

exp(�̂�𝑖,𝑗
𝑘,𝑙)

∑ exp (�̂�
𝑖,𝑗′
𝑘,𝑙)𝑗ϵ𝑁𝑖

 and (9)

�̂�𝑖,𝑗
𝑘,𝑙 = LeakyReLU(𝑉𝑘,𝑙)Concat(𝑈𝑘,𝑙ℎ𝑖

𝑙 , 𝑈𝑘,𝑙ℎ𝑗
𝑙), (10)

33

where LeakyReLU is a smoothing approximation of ReLU and V k,l ∈ R2d/K , learns a mean over

each node’s neighborhood features sparsely weighted by the importance of each neighbor.

 Prediction Layer

While local information exchange among neighboring nodes is important, achieving effective

graph classification requires the integration of global information. This integration is facilitated

through a Readout layer, which aggregates information from all node embeddings and consolidates

them into a singular graph embedding vector. This operation, often referred to as pooling, ensures

a comprehensive representation of the entire graph. By flattening the gathered node embeddings

into a unified vector, the Readout layer encapsulates global structural characteristics, allowing for

informed and accurate graph classification. In essence, this pooling operation harmonizes both

local and global perspectives, enabling the model to make informed decisions based on the holistic

features of the graph. Most often, simple and permutation invariant functions are used: mean, max

and sum. For the case of both GCN and GAT we use the mean readout layer to aggregate the node

embeddings, resulting in a single graph-level embedding.

The prediction layer serves the crucial role of producing task-specific outputs, which are

subsequently input into a loss function for the end-to-end training of network parameters.

Specifically, the input to the prediction layer is derived from the outputs of the final message

passing the GCN layer for each node in the graph. For graph classification tasks, the process

involves crafting a d-dimensional graph-level vector representation, denoted as yG. This

representation is constructed by computing the average of all node features extracted from the last

GCN layer. In essence, yG encapsulates the collective information from individual nodes, forming

a comprehensive graph-level feature vector for downstream classification which is given by:

𝑦𝐺 =
1

V
∑ ℎ𝑖

𝐿

𝑉

𝑖=0

, (11)

where V is the total number of nodes in the graph and is used to compute the average of node

features and ∑ ℎ𝑖
𝐿𝑉

𝑖=0 represents the summation of the node features across all the nodes in the

graph.

The graph features are then passed to an MLP, which outputs un-normalized logits/scores ypred ∈

RC for each class:

𝑦pred = 𝑃ReLU(𝑄𝑦𝐺), (12)

where P ∈ RdXC, Q ∈ RdXd, C is the number of classes. Finally, we minimize the cross-entropy

loss between the logits and ground truth labels.

34

Chapter 4

4. Experiments

Summary: This chapter explores the experimental setup for evaluating GNNs in handling

increasingly dense data as the number of nodes varies. The study employs standard dataset splits,

Adam optimizer with dynamic learning rate decay, and diverse evaluation metrics. Two models,

GCN and GAT, are evaluated on datasets with varying node sizes, emphasizing flexibility and

attention mechanisms. Results reveal comparable performance between GCN and GAT, with

nuanced findings on the impact of node quantity. The relationship between the number of nodes

and model efficacy is identified as context-dependent, providing valuable insights for future

research.

Key Topics: GCN Net Architecture, GAT Net Architecture, Evaluation metrics.

4.1. Experimental Setup

We hypothesized that by leveraging a graph structure, GNNs can extract more information from

the denser data and learn more from the graph structure when increasing the node size. We use the

standard splits of all four datasets LUNGS_75, LUNGS_200, LUNGS_300 and LUNGS_400. All

the datasets have the same number of splits i.e., 513 train, 50 validation and 141 test graphs. The

50 graphs for the validation set are randomly sampled from the training set and the same split is

used for both GNNs. To measure the performance, the following evaluation metrics are used:

• Accuracy (ACC) =
(𝑡𝑝+𝑡𝑛)

(𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛)
,

• Sensitivity (SEN) =
𝑡𝑝

(𝑡𝑝 + 𝑓𝑛)
,

• Specificity (SPEC) =
𝑡𝑛  

(𝑡𝑛 + 𝑓𝑝)
 and

• Area under the ROC curve (AUC),

where tp, fp, tn and fn are the total number of true positive, false positive true negative and false

negative, respectively.

We employ the Adam optimizer [71]with a consistent learning rate decay strategy across all

models. Initially, we select an initial learning rate from the set (10-2, 10-3, 10-4). If the validation

loss fails to improve after a fixed number of epochs, the learning rate is halved. Notably, we do

not set a predefined maximum number of epochs and instead, training continues until the learning

35

rate reaches the minimal value of 10-6. This adaptive approach ensures that the training process is

dynamically responsive, allowing for efficient convergence and termination based on the observed

behavior of the optimization process.

Our experimental objective does not revolve around maximizing the absolute performance of the

models; rather, we aim to discern trends in performance as the number of nodes increases and to

understand the influence of node embeddings (coordinate points and pixel intensity) on models’

performance. Each model is equipped with approximately 100,000 parameters, with slight

variations depending on the hidden unit’s configuration. To ensure robustness and account for

variability, each experiment is conducted three times, each initialization employing a different

seed. This meticulous approach allows us to derive insights into the nuanced relationship between

model parameters, node quantity, and the impact of different node embeddings on overall model

performance.

Figure 17 GCN Net Architecture

The GCN Net model is structured for efficient graph-based classification. It initializes with

parameters defining input/output dimensions, hidden layers, batch normalization and activation

function. Linear embedding adapts input features and undergoes a linear transformation through a

weighted sum of their elements, resulting in output features. A stack of GCN layers processes the

graph data, incorporating ReLU activation, batch normalization, and residual connections for

stability. The model performs a mean readout operation to aggregate node features into a graph-

level representation. An MLP readout layer then reduces the dimensionality for accurate

36

predictions. During training, the model calculates binary cross-entropy loss. This modular design

emphasizes flexibility in graph-based tasks, offering customizable options for layer count,

activation functions, and readout operations.

Figure 18 GAT Net Architecture

The GAT Net model follows a streamlined workflow, starting with parameter initialization for

input/output dimensions, attention heads, and architecture details. Linear embedding adapts input

features for multiple attention heads, allowing the model to learn diverse representations

simultaneously. The stack of GAT layers performs attention operations, incorporating batch

normalization and residual connections for stability. Leaky ReLU (Rectified Linear Unit) is an

activation function commonly used to add nonlinearity to the model. It is like the traditional ReLU

activation but allows a small, non-zero gradient when the input is negative. This adaptable design

aligns with specified dimensions and attention head counts. The model aggregates node features

using a mean readout operation, followed by an MLP readout layer for accurate predictions. The

sequential processing of graph structure, node features, and edge features ensures flexibility in

graph-based classification tasks, emphasizing attention mechanisms and modular architecture.

37

4.2. Results and Analysis

Our experimental evaluations involved two distinct models, GCN and GAT, applied to four

different datasets: LUNGS_75, LUNGS_200, LUNGS_300, and LUNGS_400. To

comprehensively assess the impact of node embeddings, we created two versions of each dataset—

one with node embeddings containing only coordinate points and another with both coordinate

points and pixel intensity. This design choice enabled a comparative analysis of how node

embeddings influence the models' ability to capture relevant information.

In terms of overall performance, both GCN and GAT exhibited comparable results, displaying

varying accuracy and AUC scores across the four datasets. When evaluating the models' ability to

accurately classify graph structures, both GAT and GCN achieved the highest AUC scores of 0.8

and 0.79, respectively. This parity in AUC scores indicates that both models perform similarly in

distinguishing between TB-positive and TB-negative cases. Notably, this achievement was

observed on the LUNGS_300 dataset when GAT and GCN were incorporated both coordinate and

pixel intensity as node embeddings.

Although we observe a gradual increase in the AUC scores and accuracy when the number of

nodes is increased LUNGS_400 doesn’t perform quite well compared to the LUNGS_300 dataset.

This could be because as the number of nodes increases the graph becomes more and more like

grid structured data and because GCN works well on structured data we see GCN having a better

accuracy and AUC score than the GAT model. We also observe that in most results when nodes

with coordinates and nodes with coordinates plus pixel intensity are compared, they have some

variations in them meaning that graphs are failing to capture enough relevant information.

Upon evaluating the GNN models across the four datasets, it becomes evident that the number of

nodes in the graph influences overall performance. However, the impact is characterized by a

mixed trend, with AUC scores fluctuating in response to variations in the number of nodes. This

implies that while the number of nodes does exert an influence on model performance, it does not

follow a straightforward pattern of improvement with an increase in nodes. The fluctuating trend

suggests that the relationship between the number of nodes and overall model performance is

intricate and cannot be assumed to follow a linear trajectory. Hence, the influence of node quantity

on model efficacy appears to be context-dependent and requires careful consideration in the

interpretation of GNN model outcomes. The number of edges in the graphs increases according to

the increase in the number of nodes which would allow information to propagate faster and wider

throughout the graph. However, given the comparable large number of nodes and their edges, noise

in the graph would also propagate more. This could explain why the models perform in an

alternating pattern while varying the number of nodes in the graph.

38

Table 3 Performance evaluation result of the four datasets LUNGS_75, LUNGS_200,

LUNGS_300, and LUNGS_400 with respective models GCN and GAT with two different node

embeddings.

GNN Models Accuracy AUC Sensitivity Specificity

LUNGS_75

GCN (Coordinates only) 0.6073 0.6261 0.7562 0.4959

GAT (Coordinates only) 0.73 0.716 0.8063 0.5257

GCN (Coordinates and pixel intensity) 0.6871 0.6907 0.8688 0.5127

GAT (Coordinates and pixel intensity) 0.7055 0.742 0.8402 0.6438

LUNGS_200

GCN (Coordinates only) 0.6993 0.7047 0.701 0.7083

GAT (Coordinates only) 0.7423 0.7063 0.7083 0.7042

GCN (Coordinates and pixel intensity) 0.6993 0.7088 0.7342 0.6833

GAT (Coordinates and pixel intensity) 0.773 0.7399 0.8007 0.6792

LUNGS_300

GCN (Coordinates only) 0.8036 0.7673 0.8413 0.6934

GAT (Coordinates only) 0.7975 0.7497 0.6423 0.8539

GCN (Coordinates and pixel intensity) 0.7989 0.7911 0.851 0.736

GAT (Coordinates and pixel intensity) 0.8098 0.7935 0.881 0.706

LUNGS_400

GCN (Coordinates only) 0.7055 0.7104 0.6414 0.7794

GAT (Coordinates only) 0.7484 0.7503 0.6924 0.8082

GCN (Coordinates and pixel intensity) 0.7668 0.7642 0.7368 0.7915

GAT (Coordinates and pixel intensity) 0.7361 0.747 0.7692 0.7505

39

Figure 19 Graphical representation of GCN (Coordinate only): ACC, AUC, SPE, SEN

Figure 20 Graphical representation of GAT (Coordinate only): ACC, AUC, SPE, SEN

40

Figure 21 Graphical representation of GCN (Coordinate and pixel intensity): ACC, AUC, SPE,

SEN

Figure 22 Graphical representation of GAT (Coordinate and pixel intensity): ACC, AUC, SPE,

SEN

41

4.3. Comparision

In our study, we carried out experiments with popular GNN models: GCN and GAT for

performance comparison. For a fair comparison, we have split the results according to the datasets

so that we can compare which model outperforms the other model. Table 3 shows the comparative

study among GNN models for LUNGS_75, here for both cases GAT outperforms GCN in terms

of AUC and ACC, this trend is extended and is observed with similar results in Table 4 and table

5. However, for Table 6 this trend holds true for cases dealing with coordinate only, but GCN has

a better result when the case was coordinate and pixel intensity.

Table 4 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_75

dataset.

Models AUC ACC SPEC SEN

GCN (Coordinate only) 0.6261 0.6073 0.4959 0.7562

GAT (Coordinate only) 0.716 0.73 0.5257 0.8063

GCN (Coordinate + Pixel intensity) 0.6907 0.6871 0.5127 0.8688

GAT (Coordinate + Pixel intensity) 0.742 0.7055 0.6438 0.8402

Table 5 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_200

dataset.

Models AUC ACC SPEC SEN

GCN (Coordinate only) 0.7047 0.6993 0.7083 0.701

GAT (Coordinate only) 0.7063 0.7423 0.7042 0.7083

GCN (Coordinate + Pixel intensity) 0.7088 0.6993 0.6833 0.7342

GAT (Coordinate + Pixel intensity) 0.7399 0.773 0.6792 0.8007

42

Table 6 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_300

dataset.

Models AUC ACC SPEC SEN

GCN (Coordinate only) 0.7673 0.8036 0.6934 0.8413

GAT (Coordinate only) 0.7497 0.7975 0.8539 0.6423

GCN (Coordinate + Pixel intensity) 0.7911 0.7989 0.736 0.851

GAT (Coordinate + Pixel intensity) 0.7935 0.8098 0.706 0.881

Table 7 Comparison: AUC, ACC, SPEC, and SEN of GCN (Coordinate only), GCN (Coordinate

+ Pixel Intensity), GAT (Coordinate only), GAT (Coordinate + Pixel Intensity) in LUNGS_400

dataset.

Models AUC ACC SPEC SEN

GCN (Coordinate only) 0.7104 0.7055 0.7794 0.6414

GAT (Coordinate only) 0.7503 0.7484 0.8082 0.6924

GCN (Coordinate + Pixel intensity) 0.7642 0.7668 0.7915 0.7368

GAT (Coordinate + Pixel intensity) 0.747 0.7361 0.7505 0.7692

43

Chapter 5

5. Conclusion and Future Work

We generated distinct datasets, namely LUNGS_75, LUNGS_200, LUNGS_300, and

LUNGS_400, by constructing graphs from CXR images. The datasets varied in the number of

superpixels (nodes) and featured unique node embeddings with either coordinates only or both

coordinates and pixel intensity. Our evaluation is centered on two popular and diverse GNN

architectures. The results highlighted the substantial impact of graph topology and node features

on the performance of these architectures, underscoring the importance of factors such as the

number of nodes, local neighborhood edge density, and positional information. However, it's

noteworthy that increasing the graph structure by segmenting the image into a greater number of

superpixels did not lead to improved performance. A potential factor contributing to lower results

is the absence of a dataset with masked lung boundaries. Collecting large datasets for deep learning

is challenging, and simply expanding the dataset size does not guarantee enhanced system

robustness.

Additionally, our observations indicated that the positional variables (coordinates) have a more

pronounced impact on the overall performance of GNNs compared to including pixel intensity of

the superpixels. This discrepancy may arise from the inherent grid structure of image data,

necessitating a comprehensive set of neighbors to effectively represent the entire CXR image.

Furthermore, both GCN and GAT exhibited challenges in fully leveraging the provided graph

structure, especially when compared to state-of-the-art CNN models. This observation aligns with

concerns discussed in [72] and underscores the practical limitations of certain GNNs, emphasizing

that they might not be as potent or effective for image data as established CNN models.

Future work for classifying medical images using GNNs can involve exploring and addressing

various challenges. Here are some potential avenues for future research and development:

• Incorporate datasets with more classes to generalize GNN over multiple labels. This could help

us benchmark the results obtained from this result in a better way.

• Explore other GNN models such as Gated Graph Convolutional Networks (GGCN), Relational

Graph Convolutional Networks (RGCN), GraphSage and Graph Isomorphic Network (GIN).

• Investigate hybrid architectures where CNNs could help extract local features and GNNs for

modeling global relationships.

• Embed node features with extra dimensions of relevant data and incorporating the concept of

directed edges between nodes.

44

• Train a U-Net model to obtain lung mask of CXR image to increase dataset.

• Research on active learning frameworks for GNNs that can address label-sparse issues from

medical datasets [73].

45

BIBLIOGRAPHY

[1] A. E. Hirsh, A. G. Tsolaki, K. DeRiemer, M. W. Feldman, and P. M. Small, “Stable

association between strains of Mycobacterium tuberculosis and their human host

populations,” Proc Natl Acad Sci U S A, vol. 101, no. 14, 2004, doi:

10.1073/pnas.0305627101.

[2] S. Ravimohan, H. Kornfeld, D. Weissman, and G. P. Bisson, “Tuberculosis and lung

damage: From epidemiology to pathophysiology,” European Respiratory Review, vol. 27,

no. 147. 2018. doi: 10.1183/16000617.0077-2017.

[3] M. K. Mahbub, M. Biswas, L. Gaur, F. Alenezi, and KC Santosh, “Deep features to detect

pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia,

and tuberculosis,” Inf Sci (N Y), vol. 592, 2022, doi: 10.1016/j.ins.2022.01.062.

[4] A. Makkar and KC Santosh, “SecureFed: federated learning empowered medical imaging

technique to analyze lung abnormalities in chest X-rays,” International Journal of Machine

Learning and Cybernetics, vol. 14, no. 8, 2023, doi: 10.1007/s13042-023-01789-7.

[5] KC Santosh, S. Allu, S. Rajaraman, and S. Antani, “Advances in Deep Learning for

Tuberculosis Screening using Chest X-rays: The Last 5 Years Review,” J Med Syst, vol. 46,

no. 11, 2022, doi: 10.1007/s10916-022-01870-8.

[6] Vajda S, Karargyris A, Jaeger S, Santosh KC, Candemir S, Xue Z, Antani S, Thoma G,

“Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs,” J

Med Syst, vol. 42, no. 8, 2018, doi: 10.1007/s10916-018-0991-9.

[7] KC Santosh and S. Antani, “Automated chest x-ray screening: Can lung region symmetry

help detect pulmonary abnormalities?,” IEEE Trans Med Imaging, vol. 37, no. 5, 2018, doi:

10.1109/TMI.2017.2775636.

[8] D. Das, KC Santosh, and U. Pal, “Cross-population train/test deep learning model:

Abnormality screening in chest x-rays,” in Proceedings - IEEE Symposium on Computer-

Based Medical Systems, 2020. doi: 10.1109/CBMS49503.2020.00103.

[9] KC Santosh, D. GhoshRoy, and S. Nakarmi, “A Systematic Review on Deep Structured

Learning for COVID-19 Screening Using Chest CT from 2020 to 2022,” Healthcare

(Switzerland), vol. 11, no. 17. 2023. doi: 10.3390/healthcare11172388.

[10] KC Santosh, S. Vajda, S. Antani, and G. R. Thoma, “Edge map analysis in chest X-rays for

automatic pulmonary abnormality screening,” Int J Comput Assist Radiol Surg, vol. 11, no.

9, 2016, doi: 10.1007/s11548-016-1359-6.

46

[11] KC Santosh, “AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and

Cross-Population Train/Test Models on Multitudinal/Multimodal Data,” J Med Syst, vol.

44, no. 5, 2020, doi: 10.1007/s10916-020-01562-1.

[12] “Belarus Tuberculosis Portal,” B. P. Health.

[13] S. Jaeger, S. Candemir, S. Antani, Y.-X. J. Wáng, P.-X. Lu, and G. Thoma, “Two public

chest X-ray datasets for computer-aided screening of pulmonary diseases.,” Quant Imaging

Med Surg, vol. 4, no. 6, 2014, doi: 10.3978/j.issn.2223-4292.2014.11.20.

[14] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural

Comput, vol. 1, no. 4, 1989, doi: 10.1162/neco.1989.1.4.541.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun ACM, vol. 60, no. 6, 2017, doi: 10.1145/3065386.

[16] M. M. Bronstein, J. Bruna, Y. Lecun, A. Szlam, and P. Vandergheynst, “Geometric Deep

Learning: Going beyond Euclidean data,” IEEE Signal Processing Magazine, vol. 34, no.

4. 2017. doi: 10.1109/MSP.2017.2693418.

[17] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,” in

EEE International Joint Conference on Neural Networks, 2005.

[18] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural

network model,” IEEE Trans Neural Netw, vol. 20, no. 1, 2009, doi:

10.1109/TNN.2008.2005605.

[19] F. Scarselli, A. C. Tsoi, M. Gori, and M. Hagenbuchner, “Graphical-based learning

environments for pattern recognition,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

3138, 2004, doi: 10.1007/978-3-540-27868-9_4.

[20] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey on

Graph Neural Networks,” IEEE Trans Neural Netw Learn Syst, vol. 32, no. 1, 2021, doi:

10.1109/TNNLS.2020.2978386.

[21] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and deep locally

connected networks on graphs,” in 2nd International Conference on Learning

Representations, ICLR 2014 - Conference Track Proceedings, 2014.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” in 5th International Conference on Learning Representations, ICLR 2017 -

Conference Track Proceedings, 2017.

47

[23] V. Di Massa, G. Monfardini, L. Sarti, F. Scarselli, M. Maggini, and M. Gori, “A comparison

between recursive neural networks and graph neural networks,” in IEEE International

Conference on Neural Networks - Conference Proceedings, 2006. doi:

10.1109/ijcnn.2006.246763.

[24] R. Fergus, A. Perona, and A. Zisserman, “A sparse object category model for efficient

learning and exhaustive recognition,” in Proceedings - 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, CVPR 2005, 2005. doi:

10.1109/CVPR.2005.47.

[25] A. Quek, Z. Wang, J. Zhang, and D. Feng, “Structural image classification with graph neural

networks,” in Proceedings - 2011 International Conference on Digital Image Computing:

Techniques and Applications, DICTA 2011, 2011. doi: 10.1109/DICTA.2011.77.

[26] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans Pattern Anal

Mach Intell, vol. 22, no. 8, 2000, doi: 10.1109/34.868688.

[27] P. H. C. Avelar, A. R. Tavares, T. L. T. Da Silveira, C. R. Jung, and L. C. Lamb, “Superpixel

Image Classification with Graph Attention Networks,” in Proceedings - 2020 33rd

SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2020, 2020. doi:

10.1109/SIBGRAPI51738.2020.00035.

[28] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: An evaluation of the state-of-the-art,”

Computer Vision and Image Understanding, vol. 166, 2018, doi:

10.1016/j.cviu.2017.03.007.

[29] J. Long, Z. Yan, and H. Chen, “A Graph Neural Network for superpixel image

classification,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-

6596/1871/1/012071.

[30] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein, “Geometric

deep learning on graphs and manifolds using mixture model CNNs,” in Proceedings - 30th

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017. doi:

10.1109/CVPR.2017.576.

[31] Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST database of handwritten digits,

1998,” URL http://yann. lecun. com/exdb/mnist, vol. 10, no. 34, 1998.

[32] M. Fey, J. E. Lenssen, F. Weichert, and H. Muller, “SplineCNN: Fast Geometric Deep

Learning with Continuous B-Spline Kernels,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2018. doi:

10.1109/CVPR.2018.00097.

48

[33] U. Chaudhuri, B. Banerjee, and A. Bhattacharya, “Siamese graph convolutional network

for content based remote sensing image retrieval,” Computer Vision and Image

Understanding, vol. 184, 2019, doi: 10.1016/j.cviu.2019.04.004.

[34] B. Knyazev, G. W. Taylor, and M. R. Amer, “Understanding attention and generalization

in graph neural networks,” in Advances in Neural Information Processing Systems, 2019.

[35] K. Xu, S. Jegelka, W. Hu, and J. Leskovec, “How powerful are graph neural networks?,” in

7th International Conference on Learning Representations, ICLR 2019, 2019.

[36] B. Knyazev, X. Lin, M. R. Amer, and G. W. Taylor, “Image classification with hierarchical

multigraph networks,” in 30th British Machine Vision Conference 2019, BMVC 2019, 2020.

[37] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson,

“Benchmarking Graph Neural Networks,” Mar. 2020.

[38] P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, and Y. Bengio, “Graph

attention networks,” in 6th International Conference on Learning Representations, ICLR

2018 - Conference Track Proceedings, 2018. doi: 10.1007/978-3-031-01587-8_7.

[39] X. Bresson and T. Laurent, “Residual Gated Graph ConvNets,” Nov. 2017.

[40] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” in Advances in Neural Information Processing Systems, 2017.

[41] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” … Science

Department, University of Toronto, Tech. …, 2009, doi: 10.1.1.222.9220.

[42] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging

field of signal processing on graphs: Extending high-dimensional data analysis to networks

and other irregular domains,” IEEE Signal Process Mag, vol. 30, no. 3, 2013, doi:

10.1109/MSP.2012.2235192.

[43] Z. Liu and J. Zhou, “Introduction to Graph Neural Networks,” Synthesis Lectures on

Artificial Intelligence and Machine Learning, vol. 14, no. 2. 2020. doi:

10.2200/S00980ED1V01Y202001AIM045.

[44] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral

graph theory,” Appl Comput Harmon Anal, vol. 30, no. 2, 2011, doi:

10.1016/j.acha.2010.04.005.

[45] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on

graphs with fast localized spectral filtering,” in Advances in Neural Information Processing

Systems, 2016.

49

[46] A. Micheli, “Neural network for graphs: A contextual constructive approach,” IEEE Trans

Neural Netw, vol. 20, no. 3, 2009, doi: 10.1109/TNN.2008.2010350.

[47] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Advances in

Neural Information Processing Systems, 2016.

[48] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network:

Data-driven traffic forecasting,” in 6th International Conference on Learning

Representations, ICLR 2018 - Conference Track Proceedings, 2018.

[49] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

align and translate,” in 3rd International Conference on Learning Representations, ICLR

2015 - Conference Track Proceedings, 2015.

[50] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for machine

reading,” in EMNLP 2016 - Conference on Empirical Methods in Natural Language

Processing, Proceedings, 2016. doi: 10.18653/v1/d16-1053.

[51] A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information

Processing Systems, 2017.

[52] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of Graph Neural

Network Evaluation,” Nov. 2018.

[53] S. Brody, U. Alon, and E. Yahav, “HOW ATTENTIVE ARE GRAPH ATTENTION

NETWORKS?,” in ICLR 2022 - 10th International Conference on Learning

Representations, 2022.

[54] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with PyTorch Geometric,”

Mar. 2019.

[55] J. Zhou et al., “Graph neural networks: A review of methods and applications,” AI Open,

vol. 1. 2020. doi: 10.1016/j.aiopen.2021.01.001.

[56] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph sequence neural

networks,” in 4th International Conference on Learning Representations, ICLR 2016 -

Conference Track Proceedings, 2016.

[57] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC superpixels

compared to state-of-the-art superpixel methods,” IEEE Trans Pattern Anal Mach Intell,

vol. 34, no. 11, 2012, doi: 10.1109/TPAMI.2012.120.

[58] R. C. Prim, “Shortest Connection Networks And Some Generalizations,” Bell System

Technical Journal, vol. 36, no. 6, 1957, doi: 10.1002/j.1538-7305.1957.tb01515.x.

50

[59] B. Delaunay, “Sur la sphere vide,” Bulletin de l’Académie des Sciences de l’URSS, vol. 6,

1934.

[60] W. Y. Ma and B. S. Manjunath, “EdgeFlow: a technique for boundary detection and image

segmentation,” IEEE Transactions on Image Processing, vol. 9, no. 8, 2000, doi:

10.1109/83.855433.

[61] K. Mikolajczyk et al., “A comparison of affine region detectors,” Int J Comput Vis, vol. 65,

no. 1–2, 2005, doi: 10.1007/s11263-005-3848-x.

[62] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int J Comput Vis,

vol. 60, no. 2, 2004, doi: 10.1023/B:VISI.0000029664.99615.94.

[63] X. Ren and J. Malik, “Learning a classification model for segmentation,” in Proceedings of

the IEEE International Conference on Computer Vision, 2003. doi:

10.1109/iccv.2003.1238308.

[64] C. Liu, R. Zhao, and M. Pang, “Lung segmentation based on random forest and multi-scale

edge detection,” IET Image Process, vol. 13, no. 10, 2019, doi: 10.1049/iet-ipr.2019.0130.

[65] L. Li, J. Yao, J. Tu, X. Lu, K. Li, and Y. Liu, “Edge-based split-and-merge superpixel

segmentation,” in 2015 IEEE International Conference on Information and Automation,

ICIA 2015 - In conjunction with 2015 IEEE International Conference on Automation and

Logistics, 2015. doi: 10.1109/ICInfA.2015.7279427.

[66] I. Hong, J. Clemons, R. Venkatesan, I. Frosio, B. Khailany, and S. W. Keckler, “A real-

time energy-efficient superpixel hardware accelerator for mobile computer vision

applications,” in Proceedings - Design Automation Conference, 2016. doi:

10.1145/2897937.2897974.

[67] C. Y. Ren and I. Reid, “gSLIC: a real-time implementation of SLIC superpixel

segmentation,” University of Oxford, Department of Engineering Science, 2011.

[68] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool, “SEEDS: Superpixels Extracted

Via Energy-Driven Sampling,” Int J Comput Vis, vol. 111, no. 3, 2015, doi:

10.1007/s11263-014-0744-2.

[69] J. Yao, M. Boben, S. Fidler, and R. Urtasun, “Real-time coarse-to-fine topologically

preserving segmentation,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2015. doi: 10.1109/CVPR.2015.7298913.

[70] Pradhan Ronaj and KC Santosh, “Analyzing pulmonary abnormality with superpixel based

graph neural network in chest x-ray,” 6th International Conference on Recent Trends in

Image Processing and Pattern Recognition (RTIP2R), 2023.

51

[71] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd

International Conference on Learning Representations, ICLR 2015 - Conference Track

Proceedings, 2015.

[72] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A FAIR COMPARISON OF GRAPH

NEURAL NETWORKS FOR GRAPH CLASSIFICATION,” in 8th International

Conference on Learning Representations, ICLR 2020, 2020.

[73] S. Nakarmi and KC Santosh, “Active Learning to Minimize the Risk from Future

Epidemics,” in Proceedings - 2023 IEEE Conference on Artificial Intelligence, CAI 2023,

2023. doi: 10.1109/CAI54212.2023.00145.

	ANALYZING PULMONARY ABNORMALITY WITH SUPERPIXEL BASED GRAPH NEURAL NETWORKS IN CHEST X-RAY

