1,748,468 research outputs found
Structural reliability of electrical objects. Theory and examples of solving tasks
Structural reliability of energy objects is one of the most important topics of study in the study of specialty disciplines in the field of Power Engineering, Electrical Engineering and Electromechanics. Students in the specialty "Renewable Energy and High Voltage Engineering and Electrophysics" should have a clear understanding of the nature of structural redundancy issues, be able to evaluate the actual level of reliability through appropriate analysis and know the ways and means of ensuring trouble–free operation of power systems, subsystems and objects of renewable energy
Recommended from our members
Introduction of Structural Health Monitoring to Civil Engineering Education
This paper describes the development of a Structural Health Monitoring (SHM) Education Unit; its initial implementation and assessment at Louisiana State University (LSU) and the University of Louisiana- Lafayette (UL-Lafayette) during the 2016-17 Academic Year; and its subsequent re- implementation and assessment during the 2017-18 Academic Year at these institutions plus its initial implementation at four partner institutions Case Western Reserve University, Tuskegee University, University of North Florida and Virginia Tech. The SHM Education Unit encompasses the Fundamentals Education Subunit and the Applications Education Subunit.
The Fundamentals Education Subunit consists of an introductory and four content online modules whereas the Applications Education Subunit consists of two content online modules, a SHM system design/evaluation module and a SHM instrumentation model demonstration. Using a pedagogical model developed during the project, the former Subunit is implemented in two classes of a structural analysis course whereas the latter Subunit is implemented in two classes of a reinforced concrete design course. The results of readiness tests and student assessments demonstrate the effectiveness of the content and the pedagogical model to engage students and teach SHM fundamentals and practices.Cockrell School of Engineerin
Virtual Reality of Earthquake Ground Motions for Emergency Response
Ground motions interface earthquake science and engineering to advance understanding of seismic hazards and risk. Virtual reality provides an attractive tool to extend knowledge of the research community to a larger audience. This work visualizes emergency response under extreme motions, in the CAVE of the MARquette Visualization Laboratory. The visualization (a) displays ground motions (from the science community), (b) inputs these motions to structural models (from the engineering community) and illustrates the resulting responses, (c) translates structural responses to damage states of building elements, (d) creates a virtual room subjected to the perception associated with such earthquake shaking, and (e) introduces the human element of emergency response in this immersive environment. Building upon previous work on earthquake simulations, performance-based earthquake engineering (PBEE), building information modeling (BIM), and earthquake awareness, this study integrates elements of PBEE and BIM within the CAVE environment to provide visual information for decision making. Real-time or near real-time information via earthquake early warning (EEW) and structural health monitoring (SHM) further facilitates response within a limited time frame. As advanced technologies contribute to the future of community resilience, visualization plays an emerging role in connecting earthquake science, engineering, and policy
The mathematical components of engineering expertise: the relationship between doing and understanding mathematics
this paper are extracts from our interviews with engineers.) Where, then, is the complex mathematics that certainly exists in modern engineering? Throughout all aspects of engineering design, computer software has an overwhelming presence. Also, in the particular firm that we visited, there a small number of analytical specialists (a few per cent of the professional engineers employed) who act as consultants for the mathematical/analytical problems which the general design engineers cannot readily solve. (In general in structural engineering, such specialist work is often carried out by external consultants, eg. academic researchers
Structural analysis of silicon solar arrays
Engineering mechanics in structural design of silicon solar array
Characterization methods dedicated to nanometer-thick hBN layers
Hexagonal boron nitride (hBN) regains interest as a strategic component in
graphene engineering and in van der Waals heterostructures built with two
dimensional materials. It is crucial then, to handle reliable characterization
techniques capable to assess the quality of structural and electronic
properties of the hBN material used. We present here characterization
procedures based on optical spectroscopies, namely cathodoluminescence and
Raman, with the additional support of structural analysis conducted by
transmission electron microscopy. We show the capability of optical
spectroscopies to investigate and benchmark the optical and structural
properties of various hBN thin layers sources
Mechanical properties of a degradable phosphate glass fibre reinforced polymer composite for internal fracture fixation
NOTICE: this is the author’s version of a work that was accepted for publication in Materials Science and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Science and Engineering, [VOL 30, ISSUE 7, (2010)] DOI: 10.1016/j.msec.2010.04.017
Coupled thermo-mechanical damage modelling for structural steel in fire conditions
This paper aims at developing a coupled thermo-mechanical damage model for structural 6 steel at elevated temperatures. The need for adequate modelling of steel deterioration behaviour 7 remains a challenging task in structural fire engineering because of the complexity inherent in 8 the damage states of steel under combined actions of mechanical and fire loading. A fully three9 dimensional damage-coupled constitutive model is developed in this work based on the hypothesis 10 of effective stress space and isotropic damage theory. The new coupling model, adapted from 11 an enhanced Lemaitre’s ductile damage equation and taking into account temperature-dependent 12 thermal degradation, is a phenomenological approach where the underlying mechanisms that govern 13 the damage processes have been retained. The proposed damage model comprises a limited number 14 of parameters that could be identified using unloading slopes of stress-strain relationships through 15 tensile coupon tests. The proposed damage model is successfully implemented in the finite element 16 software ABAQUS and validated against a comprehensive range of experimental results. The 17 damage-affected structural response is accurately reproduced under various loading conditions and 18 a wide temperature range, demonstrating that the proposed damage model is a useful tool in giving a 19 realistic representation of steel deterioration behaviour for structural fire engineering applications
- …
