10,778 research outputs found

    Structural Attention Neural Networks for improved sentiment analysis

    Full text link
    We introduce a tree-structured attention neural network for sentences and small phrases and apply it to the problem of sentiment classification. Our model expands the current recursive models by incorporating structural information around a node of a syntactic tree using both bottom-up and top-down information propagation. Also, the model utilizes structural attention to identify the most salient representations during the construction of the syntactic tree. To our knowledge, the proposed models achieve state of the art performance on the Stanford Sentiment Treebank dataset.Comment: Submitted to EACL2017 for revie

    Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies Together

    Full text link
    Neural networks equipped with self-attention have parallelizable computation, light-weight structure, and the ability to capture both long-range and local dependencies. Further, their expressive power and performance can be boosted by using a vector to measure pairwise dependency, but this requires to expand the alignment matrix to a tensor, which results in memory and computation bottlenecks. In this paper, we propose a novel attention mechanism called "Multi-mask Tensorized Self-Attention" (MTSA), which is as fast and as memory-efficient as a CNN, but significantly outperforms previous CNN-/RNN-/attention-based models. MTSA 1) captures both pairwise (token2token) and global (source2token) dependencies by a novel compatibility function composed of dot-product and additive attentions, 2) uses a tensor to represent the feature-wise alignment scores for better expressive power but only requires parallelizable matrix multiplications, and 3) combines multi-head with multi-dimensional attentions, and applies a distinct positional mask to each head (subspace), so the memory and computation can be distributed to multiple heads, each with sequential information encoded independently. The experiments show that a CNN/RNN-free model based on MTSA achieves state-of-the-art or competitive performance on nine NLP benchmarks with compelling memory- and time-efficiency

    Contextualized Non-local Neural Networks for Sequence Learning

    Full text link
    Recently, a large number of neural mechanisms and models have been proposed for sequence learning, of which self-attention, as exemplified by the Transformer model, and graph neural networks (GNNs) have attracted much attention. In this paper, we propose an approach that combines and draws on the complementary strengths of these two methods. Specifically, we propose contextualized non-local neural networks (CN3^{\textbf{3}}), which can both dynamically construct a task-specific structure of a sentence and leverage rich local dependencies within a particular neighborhood. Experimental results on ten NLP tasks in text classification, semantic matching, and sequence labeling show that our proposed model outperforms competitive baselines and discovers task-specific dependency structures, thus providing better interpretability to users.Comment: Accepted by AAAI201

    RNNs Implicitly Implement Tensor Product Representations

    Full text link
    Recurrent neural networks (RNNs) can learn continuous vector representations of symbolic structures such as sequences and sentences; these representations often exhibit linear regularities (analogies). Such regularities motivate our hypothesis that RNNs that show such regularities implicitly compile symbolic structures into tensor product representations (TPRs; Smolensky, 1990), which additively combine tensor products of vectors representing roles (e.g., sequence positions) and vectors representing fillers (e.g., particular words). To test this hypothesis, we introduce Tensor Product Decomposition Networks (TPDNs), which use TPRs to approximate existing vector representations. We demonstrate using synthetic data that TPDNs can successfully approximate linear and tree-based RNN autoencoder representations, suggesting that these representations exhibit interpretable compositional structure; we explore the settings that lead RNNs to induce such structure-sensitive representations. By contrast, further TPDN experiments show that the representations of four models trained to encode naturally-occurring sentences can be largely approximated with a bag of words, with only marginal improvements from more sophisticated structures. We conclude that TPDNs provide a powerful method for interpreting vector representations, and that standard RNNs can induce compositional sequence representations that are remarkably well approximated by TPRs; at the same time, existing training tasks for sentence representation learning may not be sufficient for inducing robust structural representations.Comment: Accepted to ICLR 201
    • …
    corecore