14,262 research outputs found

    Dimension Extractors and Optimal Decompression

    Full text link
    A *dimension extractor* is an algorithm designed to increase the effective dimension -- i.e., the amount of computational randomness -- of an infinite binary sequence, in order to turn a "partially random" sequence into a "more random" sequence. Extractors are exhibited for various effective dimensions, including constructive, computable, space-bounded, time-bounded, and finite-state dimension. Using similar techniques, the Kucera-Gacs theorem is examined from the perspective of decompression, by showing that every infinite sequence S is Turing reducible to a Martin-Loef random sequence R such that the asymptotic number of bits of R needed to compute n bits of S, divided by n, is precisely the constructive dimension of S, which is shown to be the optimal ratio of query bits to computed bits achievable with Turing reductions. The extractors and decompressors that are developed lead directly to new characterizations of some effective dimensions in terms of optimal decompression by Turing reductions.Comment: This report was combined with a different conference paper "Every Sequence is Decompressible from a Random One" (cs.IT/0511074, at http://dx.doi.org/10.1007/11780342_17), and both titles were changed, with the conference paper incorporated as section 5 of this new combined paper. The combined paper was accepted to the journal Theory of Computing Systems, as part of a special issue of invited papers from the second conference on Computability in Europe, 200

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Randomness extraction and asymptotic Hamming distance

    Full text link
    We obtain a non-implication result in the Medvedev degrees by studying sequences that are close to Martin-L\"of random in asymptotic Hamming distance. Our result is that the class of stochastically bi-immune sets is not Medvedev reducible to the class of sets having complex packing dimension 1

    Pi01 encodability and omniscient reductions

    Full text link
    A set of integers AA is computably encodable if every infinite set of integers has an infinite subset computing AA. By a result of Solovay, the computably encodable sets are exactly the hyperarithmetic ones. In this paper, we extend this notion of computable encodability to subsets of the Baire space and we characterize the Π10\Pi^0_1 encodable compact sets as those who admit a non-empty Σ11\Sigma^1_1 subset. Thanks to this equivalence, we prove that weak weak K\"onig's lemma is not strongly computably reducible to Ramsey's theorem. This answers a question of Hirschfeldt and Jockusch.Comment: 9 page

    Extracting the Kolmogorov Complexity of Strings and Sequences from Sources with Limited Independence

    Get PDF
    An infinite binary sequence has randomness rate at least σ\sigma if, for almost every nn, the Kolmogorov complexity of its prefix of length nn is at least σn\sigma n. It is known that for every rational σ(0,1)\sigma \in (0,1), on one hand, there exists sequences with randomness rate σ\sigma that can not be effectively transformed into a sequence with randomness rate higher than σ\sigma and, on the other hand, any two independent sequences with randomness rate σ\sigma can be transformed into a sequence with randomness rate higher than σ\sigma. We show that the latter result holds even if the two input sequences have linear dependency (which, informally speaking, means that all prefixes of length nn of the two sequences have in common a constant fraction of their information). The similar problem is studied for finite strings. It is shown that from any two strings with sufficiently large Kolmogorov complexity and sufficiently small dependence, one can effectively construct a string that is random even conditioned by any one of the input strings
    corecore