207,431 research outputs found

    Delay-Independent Stability Analysis of Linear Time-Delay Systems Based on Frequency

    Get PDF
    This paper studies strong delay-independent stability of linear time-invariant systems. It is known that delay-independent stability of time-delay systems is equivalent to some frequency-dependent linear matrix inequalities. To reduce or eliminate conservatism of stability criteria, the frequency domain is discretized into several sub-intervals, and piecewise constant Lyapunov matrices are employed to analyze the frequency-dependent stability condition. Applying the generalized Kalman–Yakubovich–Popov lemma, new necessary and sufficient criteria are then obtained for strong delay-independent stability of systems with a single delay. The effectiveness of the proposed method is illustrated by a numerical example

    Lyapunov Equation for the Stability of Linear Delay Systems of Retarded and Neutral Type

    Get PDF
    Projet SOSSOIn this note is studied the delay-independent stability of delay systems. It is shown that the strong delay-independent stability is tantamount to the feasibility of certain linear matrix inequality, or equivalently to the existence of certain quadratic Lyapunov-Krasovskii functional, independent of the (nonnegative) value of the delay. This constitutes the analogue of some well-known properties of finite-dimensional systems. This result is then applied to study delay-independent stability of systems with commensurate delays, delay-independent stabilizability, and delay-indepen- dent stability of systems with polytopic uncertainties

    Positive trigonometric polynomials for strong stability of difference equations

    Full text link
    We follow a polynomial approach to analyse strong stability of linear difference equations with rationally independent delays. Upon application of the Hermite stability criterion on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate that certificates of strong stability can be obtained at a reasonable computational cost for state dimension and number of delays not exceeding 4 or 5

    H∞ control of nonlinear systems: a convex characterization

    Get PDF
    The nonlinear H∞-control problem is considered with an emphasis on developing machinery with promising computational properties. The solutions to H∞-control problems for a class of nonlinear systems are characterized in terms of nonlinear matrix inequalities which result in convex problems. The computational implications for the characterization are discussed
    • 

    corecore