260 research outputs found

    Strong Converse Theorems for Classes of Multimessage Multicast Networks: A R\'enyi Divergence Approach

    Full text link
    This paper establishes that the strong converse holds for some classes of discrete memoryless multimessage multicast networks (DM-MMNs) whose corresponding cut-set bounds are tight, i.e., coincide with the set of achievable rate tuples. The strong converse for these classes of DM-MMNs implies that all sequences of codes with rate tuples belonging to the exterior of the cut-set bound have average error probabilities that necessarily tend to one (and are not simply bounded away from zero). Examples in the classes of DM-MMNs include wireless erasure networks, DM-MMNs consisting of independent discrete memoryless channels (DMCs) as well as single-destination DM-MMNs consisting of independent DMCs with destination feedback. Our elementary proof technique leverages properties of the R\'enyi divergence.Comment: Submitted to IEEE Transactions on Information Theory, Jul 18, 2014. Revised on Jul 31, 201

    Cooperative Relay Broadcast Channels

    Full text link
    The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.Comment: Submitted to the IEEE Transactions on Information Theory, July 200

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Cooperative Strategies for Simultaneous and Broadcast Relay Channels

    Full text link
    Consider the \emph{simultaneous relay channel} (SRC) which consists of a set of relay channels where the source wishes to transmit common and private information to each of the destinations. This problem is recognized as being equivalent to that of sending common and private information to several destinations in presence of helper relays where each channel outcome becomes a branch of the \emph{broadcast relay channel} (BRC). Cooperative schemes and capacity region for a set with two memoryless relay channels are investigated. The proposed coding schemes, based on \emph{Decode-and-Forward} (DF) and \emph{Compress-and-Forward} (CF) must be capable of transmitting information simultaneously to all destinations in such set. Depending on the quality of source-to-relay and relay-to-destination channels, inner bounds on the capacity of the general BRC are derived. Three cases of particular interest are considered: cooperation is based on DF strategy for both users --referred to as DF-DF region--, cooperation is based on CF strategy for both users --referred to as CF-CF region--, and cooperation is based on DF strategy for one destination and CF for the other --referred to as DF-CF region--. These results can be seen as a generalization and hence unification of previous works. An outer-bound on the capacity of the general BRC is also derived. Capacity results are obtained for the specific cases of semi-degraded and degraded Gaussian simultaneous relay channels. Rates are evaluated for Gaussian models where the source must guarantee a minimum amount of information to both users while additional information is sent to each of them.Comment: 32 pages, 7 figures, To appear in IEEE Trans. on Information Theor

    An upper bound on relaying over capacity based on channel simulation

    Full text link
    The upper bound on the capacity of a 3-node discrete memoryless relay channel is considered, where a source X wants to send information to destination Y with the help of a relay Z. Y and Z are independent given X, and the link from Z to Y is lossless with rate R0R_0. A new inequality is introduced to upper-bound the capacity when the encoding rate is beyond the capacities of both individual links XY and XZ. It is based on generalization of the blowing-up lemma, linking conditional entropy to decoding error, and channel simulation, to the case with side information. The achieved upper-bound is strictly better than the well-known cut-set bound in several cases when the latter is CXY+R0C_{XY}+R_0, with CXYC_{XY} being the channel capacity between X and Y. One particular case is when the channel is statistically degraded, i.e., either Y is a statistically degraded version of Z with respect to X, or Z is a statistically degraded version of Y with respect to X. Moreover in this case, the bound is shown to be explicitly computable. The binary erasure channel is analyzed in detail and evaluated numerically.Comment: Submitted to IEEE Transactions on Information Theory, 21 pages, 6 figure

    Capacity Theorems for the Fading Interference Channel with a Relay and Feedback Links

    Full text link
    Handling interference is one of the main challenges in the design of wireless networks. One of the key approaches to interference management is node cooperation, which can be classified into two main types: relaying and feedback. In this work we consider simultaneous application of both cooperation types in the presence of interference. We obtain exact characterization of the capacity regions for Rayleigh fading and phase fading interference channels with a relay and with feedback links, in the strong and very strong interference regimes. Four feedback configurations are considered: (1) feedback from both receivers to the relay, (2) feedback from each receiver to the relay and to one of the transmitters (either corresponding or opposite), (3) feedback from one of the receivers to the relay, (4) feedback from one of the receivers to the relay and to one of the transmitters. Our results show that there is a strong motivation for incorporating relaying and feedback into wireless networks.Comment: Accepted to the IEEE Transactions on Information Theor
    • …
    corecore