490 research outputs found

    A modified semi--implict Euler-Maruyama Scheme for finite element discretization of SPDEs with additive noise

    Full text link
    We consider the numerical approximation of a general second order semi--linear parabolic stochastic partial differential equation (SPDE) driven by additive space-time noise. We introduce a new modified scheme using a linear functional of the noise with a semi--implicit Euler--Maruyama method in time and in space we analyse a finite element method (although extension to finite differences or finite volumes would be possible). We prove convergence in the root mean square L2L^{2} norm for a diffusion reaction equation and diffusion advection reaction equation. We present numerical results for a linear reaction diffusion equation in two dimensions as well as a nonlinear example of two-dimensional stochastic advection diffusion reaction equation. We see from both the analysis and numerics that the proposed scheme has better convergence properties than the standard semi--implicit Euler--Maruyama method

    Monte Carlo versus multilevel Monte Carlo in weak error simulations of SPDE approximations

    Full text link
    The simulation of the expectation of a stochastic quantity E[Y] by Monte Carlo methods is known to be computationally expensive especially if the stochastic quantity or its approximation Y_n is expensive to simulate, e.g., the solution of a stochastic partial differential equation. If the convergence of Y_n to Y in terms of the error |E[Y - Y_n]| is to be simulated, this will typically be done by a Monte Carlo method, i.e., |E[Y] - E_N[Y_n]| is computed. In this article upper and lower bounds for the additional error caused by this are determined and compared to those of |E_N[Y - Y_n]|, which are found to be smaller. Furthermore, the corresponding results for multilevel Monte Carlo estimators, for which the additional sampling error converges with the same rate as |E[Y - Y_n]|, are presented. Simulations of a stochastic heat equation driven by multiplicative Wiener noise and a geometric Brownian motion are performed which confirm the theoretical results and show the consequences of the presented theory for weak error simulations.Comment: 16 pages, 5 figures; formulated Section 2 independently of SPDEs, shortened Section 3, added example of geometric Brownian motion in Section

    Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations

    Get PDF
    Influenced by Higham, Mao and Stuart [9], several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. Recently, we developed a new explicit method in [23], called the truncated EM method, for the nonlinear SDE dx(t) = f (x(t))dt + g(x(t))dB(t) and established the strong convergence theory under the local Lip- schitz condition plus the Khasminskii-type condition xT f (x) + p−1 |g(x)|2 ≤ K(1 + |x|2). However, due to the page limit there, we did not study the convergence rates for the method, which is the aim of this paper. We will, under some additional conditions, discuss the rates of Lq -convergence of the truncated EM method for 2 ≤ q < p and show that the order of Lq -convergence can be arbitrarily close to q/2
    • …
    corecore