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Convergence Rates of the Truncated

Euler–Maruyama Method for Stochastic Differential

Equations

Xuerong Mao∗

Department of Mathematics and Statistics,

University of Strathclyde, Glasgow G1 1XH, U.K.

Abstract

Influenced by Higham, Mao and Stuart [9], several numerical methods have been de-
veloped to study the strong convergence of the numerical solutions to stochastic differen-
tial equations (SDEs) under the local Lipschitz condition. These numerical methods in-
clude the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped
EM, the backward EM, the backward forward EM, etc. Recently, we developed a new
explicit method in [23], called the truncated EM method, for the nonlinear SDE dx(t) =
f(x(t))dt+ g(x(t))dB(t) and established the strong convergence theory under the local Lip-
schitz condition plus the Khasminskii-type condition xT f(x) + p−1

2
|g(x)|2 ≤ K(1 + |x|2).

However, due to the page limit there, we did not study the convergence rates for the method,
which is the aim of this paper. We will, under some additional conditions, discuss the rates
of Lq-convergence of the truncated EM method for 2 ≤ q < p and show that the order of
Lq-convergence can be arbitrarily close to q/2.

Key words: Stochastic differential equation, local Lipschitz condition, Khasminskii-type
condition, truncated Euler-Maruyama method, convergence rate.

1 Introduction

This is the continuation of our recent paper [23], where we developed a new explicit method,
called the truncated EM method, for the multi-dimensional nonlinear SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t)

and established the strong convergence theory under the local Lipschitz condition plus the
Khasminskii-type condition

xT f(x) +
p− 1

2
|g(x)|2 ≤ K(1 + |x|2).

However, we did not study the convergence rates for the method there. The key aim of this
paper is to discuss the rates of Lq-convergence for 2 ≤ q < p.

In [23], we have reviewed the developments of numerical methods for SDEs for the past
twenty years. In summary, up to 2002, most of the existing strong convergence theory for
numerical methods requires the coefficients of the SDEs to be globally Lipschitz continuous
(see, e.g., [18, 21, 27]). In 2002, Higham, Mao and Stuart published a very influential paper [9]
(Google citation 318 on 6 September 2015) which opened a new chapter in the study of numerical
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solutions of SDEs—to study the strong convergence question for numerical approximations under
the local Lipschitz condition. For example, implicit methods have been used to study the
numerical solutions to SDEs without the linear growth condition (see, e.g., [24, 34, 35] and for the
background on the implicit methods, we refer the reader to the papers [2, 4, 9, 12, 11, 17, 26, 31]
and the book [18]). Methods with variable stepsize also attract a lot of attention [5, 29, 36,
39]. Other weak forms of convergence, say weak convergence, convergence in probability and
pathwise convergence, are discussed in [1, 7, 16, 18, 22, 25, 28, 37], just to mention a few. More
significantly, some modified EM methods have recently been developed for the nonlinear SDEs
without the linear growth condition. For example, the tamed EM method was developed in [14]
to approximate SDEs with one-sided Lipschitz drift coefficient and the linear growth diffusion
coefficient. This method was further developed in [33] while the tamed Milstein method was
developed in [38]. Moreover, the stopped EM method was developed in [20] for nonlinear SDEs
as well. Very recently, another new explicit method—the truncated EM method was developed
in [23]. These new explicit EM methods have shown their abilities to approximate the solutions
of nonlinear SDEs.

In this paper, we will investigate the convergence rates of the truncated EM method. For
the convenience of the reader, we will, in section 2, make a quick review on the main results in
[23], where the truncated EM method was initiated. We will then study the rates of convergence
at a single time in section 3 and over a finite time interval in section 4. A number of examples
will be discussed throughout sections 3 and 4 to illustrate our theory and to motivate further
developments. We will conclude our paper in section 5.

2 The Truncated EM Method

Throughout this paper, unless otherwise specified, we let (Ω,F ,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions (that is, it is right continuous and
increasing while F0 contains all P-null sets), and let E denote the expectation corresponding to
P. Let B(t) be an m-dimensional Brownian motion defined on the space. If A is a vector or
matrix, its transpose is denoted by AT . If x ∈ R

d, then |x| is the Euclidean norm. If A is a
matrix, we let |A| =

√

trace(ATA) be its trace norm. If A is a symmetric matrix, denote by
λmax(A) and λmin(A) its largest and smallest eigenvalue, respectively. Moreover, for two real
numbers a and b, we use a ∨ b = max(a, b) and a ∧ b = min(a, b). If G is a set, its indicator
function is denoted by IG, namely IG(x) = 1 if x ∈ G and 0 otherwise.

Consider a d-dimensional SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ R
d, where

f : Rd → R
d and g : Rd → R

d×m.

We impose two standing hypotheses in this paper.

Assumption 2.1 Assume that the coefficients f and g satisfy the local Lipschitz condition: For
any R > 0, there is a KR > 0 such that

|f(x)− f(y)| ∨ |g(x)− g(y)| ≤ KR|x− y| (2.2)

for all x, y ∈ R
d with |x| ∨ |y| ≤ R.
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Assumption 2.2 We also assume that the coefficients satisfy the Khasminskii-type condition:
There is a pair of constants p > 2 and K > 0 such that

xT f(x) +
p− 1

2
|g(x)|2 ≤ K(1 + |x|2) (2.3)

for all x ∈ R
d.

We state a known result (see, e.g., [21, 22, 32]) as a lemma for the use of this paper.

Lemma 2.3 Under Assumptions 2.1 and 2.2, the SDE (2.1) has a unique global solution x(t)
and, moreover,

sup
0≤t≤T

E|x(t)|p < ∞, ∀T > 0. (2.4)

Let us now review the truncated EM method initiated in [23]. To define the truncated EM
numerical solutions, we first choose a strictly increasing continuous function µ : R+ → R+ such
that µ(u) → ∞ as u → ∞ and

sup
|x|≤u

(

|f(x)| ∨ |g(x)|
)

≤ µ(u), ∀u ≥ 1. (2.5)

Denote by µ−1 the inverse function of µ and we see that µ−1 is a strictly increasing continuous
function from [µ(0),∞) to R+. We also choose a number ∆∗ ∈ (0, 1] and a strictly decreasing
function h : (0,∆∗] → (0,∞) such that

h(∆∗) ≥ µ(2), lim
∆→0

h(∆) = ∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0,∆∗]. (2.6)

For a given stepsize ∆ ∈ (0,∆∗], let us define the truncated functions

f∆(x) = f
(

(|x| ∧ µ−1(h(∆)))
x

|x|
)

and g∆(x) = g
(

(|x| ∧ µ−1(h(∆)))
x

|x|
)

(2.7)

for x ∈ R
d, where we set x/|x| = 0 when x = 0. It is easy to see that

|f∆(x)| ∨ |g∆(x)| ≤ µ(µ−1(h(∆))) = h(∆), ∀x ∈ R
d. (2.8)

That is, both truncated functions f∆ and g∆ are bounded although both f and g may not. It
was shown in [23] that these truncated functions preserve nicely the Khasminskii-type condition
for all ∆ ∈ (0,∆∗] as described in the following lemma.

Lemma 2.4 Let Assumption 2.2 hold. Then, for all ∆ ∈ (0,∆∗], we have

xT f∆(x) +
p− 1

2
|g∆(x)|2 ≤ 2K(1 + |x|2), ∀x ∈ R

d. (2.9)

The discrete-time truncated EM numerical solutions X∆(tk) ≈ x(tk) for tk = k∆ are formed
by setting X∆(0) = x0 and computing

X∆(tk+1) = X∆(tk) + f∆(X∆(tk))∆ + g∆(X∆(tk))∆Bk, (2.10)

for k = 0, 1, · · · , where ∆Bk = B(tk+1)− B(tk). There are two versions of the continuous-time
truncated EM solutions. The first one is defined by

x̄∆(t) =
∞
∑

k=0

X∆(tk)I[tk,tk+1)(t), t ≥ 0. (2.11)
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This is a simple step process so its sample paths are not continuous. We will refer this as the
continuous-time step-process truncated EM solution. The other one is defined by

x∆(t) = x0 +

∫ t

0
f∆(x̄∆(s))ds+

∫ t

0
g∆(x̄∆(s))dB(s) (2.12)

for t ≥ 0. We will refer this as the continuous-time continuous-sample truncated EM solution.
We observe that x∆(tk) = x̄∆(tk) = X∆(tk) for all k ≥ 0. Moreover, x∆(t) is an Itô process
with its Itô differential

dx∆(t) = f∆(x̄∆(t))dt+ g∆(x̄∆(t))dB(t). (2.13)

The truncated EM solutions have a number of nice properties established in [23]. We will
cite a number of them here for the use of this paper.

Lemma 2.5 For any ∆ ∈ (0,∆∗] and any p̂ > 0, we have

E|x∆(t)− x̄∆(t)|p̂ ≤ cp̂∆
p̂/2(h(∆))p̂, ∀t ≥ 0, (2.14)

where cp̂ is a positive constant dependent only on p̂. Consequently

lim
∆→0

E|x∆(t)− x̄∆(t)|p̂ = 0, ∀t ≥ 0. (2.15)

It should be pointed out that this lemma was proved only for p̂ ≥ 2 in [23]. However, it is
easy to see that this lemma holds for any p̂ ∈ (0, 2) as well. In fact, by the Hölder inequality,
for any p̂ ∈ (0, 2), we have

E|x∆(t)− x̄∆(t)|p̂ ≤
(

E|x∆(t)− x̄∆(t)|2
)p̂/2

≤
(

c2∆(h(∆))2
)p̂/2

= cp̂∆
p̂/2(h(∆))p̂

as desired. This is useful as in our proofs later we will use this lemma for any p̂ > 0. For example,
in the proof of Lemma 3.3, this lemma will be applied on the expression E|x∆(t)−x̄∆(t)|pq/(2p−pr)

in (3.10) and our conditions there only ensure that pq/(2p− pr) > 0.

Lemma 2.6 Let Assumptions 2.1 and 2.2 hold. Then

sup
0<∆≤∆∗

sup
0≤t≤T

E|x∆(t)|p ≤ C, ∀T > 0, (2.16)

where, and from now on, C stands for generic positive real constants dependent on T, p,K, x0
etc. but independent of ∆, R (appeared in the next lemmas) and its values may change between
occurrences.

Lemma 2.7 Let Assumptions 2.1 and 2.2 hold. For any real number R > |x0|, define the
stopping time

τR = inf{t ≥ 0 : |x(t)| ≥ R},
where throughout this paper we set inf ∅ = ∞ (and as usual ∅ denotes the empty set). Then

P(τR ≤ T ) ≤ C

Rp . (2.17)

Lemma 2.8 Let Assumptions 2.1 and 2.2 hold. For any real number R > |x0| and ∆ ∈ (0,∆∗),
define the stopping time

ρ∆,R = inf{t ≥ 0 : |x∆(t)| ≥ R}.
Then

P(ρ∆,R ≤ T ) ≤ C

Rp . (2.18)
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3 Convergence Rates at Time T

In [23], we established the theory of the strong Lq-convergence for 2 ≤ q < p, where p is a
parameter in Assumption 2.2. However, the convergence was in the asymptotic form without
the convergence rate. Starting from this section we will discuss the convergence rate. Our study
on the convergence rate will also reveal a strong relation between functions µ(·) and h(·) that
are used to define the truncated EM method. We first discuss the convergence rate at time T
in this section and then discuss the path convergence rate in the next section. We need some
additional conditions.

Assumption 3.1 Assume that there is a pair of constants q ≥ 2 and H1 > 0 such that

(x− y)T (f(x)− f(y)) +
q − 1

2
|g(x)− g(y)|2 ≤ H1|x− y|2 (3.1)

for all x, y ∈ R
d.

Assumption 3.2 Assume that there is a pair of positive constants r and H2 such that

|f(x)| ≤ H2(1 + |x|r), ∀x ∈ R
d. (3.2)

The following lemma will play a key role in the proof of the convergence rate.

Lemma 3.3 Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold and assume that 2p > qr and p > q.
Let R > |x0| be a real number and let ∆ ∈ (0,∆∗) be sufficiently small such that µ−1(h(∆)) ≥ R.
Let τR and ρ∆,R be the same as defined in Lemmas 2.7 and 2.8, respectively. Set

θ∆,R = τR ∧ ρ∆,R and e∆(t) = x∆(t)− x(t) for t ≥ 0.

Then
E|e∆(T ∧ θ∆,R)|q ≤ C∆q/4(h(∆))q/2, ∀T > 0. (3.3)

Proof. We write θ∆,R = θ for simplicity. By the Itô formula [21, 30], we can show that for
0 ≤ t ≤ T ,

E|e∆(t ∧ θ)|q

≤ E

∫ t∧θ

0
q|e∆(s)|q−2

(

eT∆(s)[f(x(s))− f∆(x̄∆(s))] +
q − 1

2
|g(x(s))− g∆(x̄∆(s))|2

)

ds. (3.4)

We observe that for 0 ≤ s ≤ t ∧ θ, |x̄∆(s)| ≤ R. But we have condition µ−1(h(∆)) ≥ R, so
|x̄∆(s)| ≤ µ−1(h(∆)). Recalling the definition of the truncated functions f∆ and g∆, we hence
have that

f∆(x̄∆(s)) = f(x̄∆(s)) and g∆(x̄∆(s)) = g(x̄∆(s)) for 0 ≤ s ≤ t ∧ θ.

It therefore follows from (3.4) that

E|e∆(t ∧ θ)|q

≤ E

∫ t∧θ

0
q|e∆(s)|q−2

(

eT∆(s)[f(x(s))− f(x̄∆(s))] +
q − 1

2
|g(x(s))− g(x̄∆(s))|2

)

ds. (3.5)

Re-arranging this gives
E|e∆(t ∧ θ)|q ≤ J1 + J2, (3.6)
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where

J1 = E

∫ t∧θ

0
q|e∆(s)|q−2

(

(x(s)− x̄∆(s))
T [f(x(s))− f(x̄∆(s))]

+
q − 1

2
|g(x(s))− g(x̄∆(s))|2

)

ds (3.7)

and

J2 = E

∫ t∧θ

0
q|e∆(s)|q−2(x̄∆(s)− x∆(s))

T [f(x(s))− f(x̄∆(s))]ds. (3.8)

By Assumption 3.1, the Young inequality and Lemma 2.5, we derive that

J1 ≤ qH1E

∫ t∧θ

0
|e∆(s)|q−2|x(s)− x̄∆(s)|2ds

≤ 2qH1E

∫ t∧θ

0

(

|e∆(s)|q + |e∆(s)|q−2|x∆(s)− x̄∆(s)|2
)

ds

≤ 4(q − 1)H1E

∫ t∧θ

0
|e∆(s)|qds+ 4H1E

∫ t∧θ

0
|x∆(s)− x̄∆(s)|qds

≤ 4(q − 1)H1

∫ t

0
E|e∆(s ∧ θ)|qds+ 4H1

∫ T

0
E|x∆(s)− x̄∆(s)|qds

≤ 4(q − 1)H1

∫ t

0
E|e∆(s ∧ θ)|qds+ C∆q/2(h(∆))q. (3.9)

Moreover, by Assumption 3.2 and the Hölder inequality as well as Lemmas 2.3, 2.5 and 2.6, we
derive that

J2 ≤ E

∫ t∧θ

0

(

(q − 2)|e∆(s)|q + 2|x̄∆(s)− x∆(s)|q/2|f(x(s))− f(x̄∆(s))|q/2
)

ds

≤ (q − 2)E

∫ t

0
|e∆(s ∧ θ)|qds

+ C

∫ T

0
E

(

|x̄∆(s)− x∆(s)|q/2(1 + |x(s)|qr/2 + |x̄∆(s)|qr/2)
)

ds

≤ (q − 2)

∫ t

0
E|e∆(s ∧ θ)|qds

+ C

∫ T

0

(

E|x̄∆(s)− x∆(s)|pq/(2p−qr)
)(2p−qr)/2p(

(1 + E|x(s)|p + E|x̄∆(s)|p)
)qr/2p

ds

≤ (q − 2)

∫ t

0
E|e∆(s ∧ θ)|qds+ C∆q/4(h(∆))q/2. (3.10)

Substituting (3.9) and (3.10) into (3.6) yields

E|e∆(t ∧ θ)|q ≤ C

∫ t

0
E|e∆(s ∧ θ)|qds+ C∆q/4(h(∆))q/2.

By the Gronwall inequality, we obtain the required assertion (3.3). 2

Let us now state our first result on the convergence rate, where we reveal a strong relation
between functions µ(·) and h(·), which are used to define the truncated EM method.

Theorem 3.4 Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold with 2p > qr and p > q. If

h(∆) ≥ µ
(

(∆q/4(h(∆))q/2)−1/(p−q)
)

(3.11)
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for all sufficiently small ∆ ∈ (0,∆∗), then, for every such small ∆,

E|x(T )− x∆(T )|q ≤ C∆q/4(h(∆))q/2 and E|x(T )− x̄∆(T )|q ≤ C∆q/4(h(∆))q/2 (3.12)

for all T > 0.

Proof. Let τR, ρ∆,R, θ∆,R and e∆(t) be the same as before. Using the Young inequality, we
derive that for any δ > 0,

E|e∆(T )|q = E

(

|e∆(T )|qI{θ∆,R>T}

)

+ E

(

|e∆(T )|qI{θ∆,R≤T}

)

≤ E

(

|e∆(T )|qI{θ∆,R>T}

)

+
qδ

p
E|e∆(T )|p +

p− q

pδq/(p−q)
P(θ∆,R ≤ T ). (3.13)

By Lemmas 2.3 and 2.6, we have
E|e∆(T )|p ≤ C

while by Lemmas 2.7 and 2.8,

P(θ∆,R ≤ T ) ≤ P(τR ≤ T ) + P(ρ∆,R ≤ T ) ≤ C

Rp .

We hence have

E|e∆(T )|q ≤ E

(

|e∆(T )|qI{θ∆,R>T}

)

+
Cqδ

p
+

C(p− q)

pRpδq/(p−q)
. (3.14)

Consequently

E|e∆(T )|q ≤ E

(

|e∆(T ∧ θ∆,R)|q
)

+
Cqδ

p
+

C(p− q)

pRpδq/(p−q)
(3.15)

holds for any ∆ ∈ (0,∆∗), R > |x0| and δ > 0. We can therefore choose δ = ∆q/4(h(∆))q/2 and
R = (∆q/4(h(∆))q/2)−1/(p−q) to get

E|e∆(T )|q ≤ E|e∆(T ∧ θ∆,R)|q + C∆q/4(h(∆))q/2. (3.16)

But, by condition (3.11), we have

µ−1(h(∆)) ≥ (∆q/4(h(∆))q/2)−1/(p−q) = R.

We can hence apply Lemma 3.3 to obtain

E|e∆(T ∧ θ∆,R)|q ≤ C∆q/4(h(∆))q/2. (3.17)

Substituting this into (3.16) yields the first inequality in (3.12). The second inequality there
follows from the first one and Lemma 2.5. 2

Example 3.5 Let us illustrate this theorem by an example before we discuss a better conver-
gence rate under stronger conditions. Consider the scalar SDE

dx(t) = (x(t)− x3(t))dt+ |x(t)|3/2dB(t), (3.18)

where B(t) is a scalar Brownian motion. This is a specified Lewis stochastic volatility model
[19]. The reason we only consider this specified model is to keep it simple while our theory is
illustrated fully. Of course, our theory works for the general Lewis stochastic volatility model.
Clearly, its coefficients f(x) = x − x3 and g(x) = |x|3/2 are locally Lipschitz continuous (i.e.,
satisfy Assumption 2.1). Also, for any p > 3, we have

xf(x) +
p− 1

2
|g(x)|2 = |x|2 − |x|4 + p− 1

2
|x|3,
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which is bounded above, say by K, for x ∈ R. That is, Assumption 2.2 is satisfied for any p > 3.
Moreover, by the mean-value theorem, it is easy to show that

|g(x)− g(y)| ≤ 3

2
(|x|1/2 + |y|1/2)|x− y|, ∀x, y ∈ R. (3.19)

We can then further show that

(x− y)(f(x)− f(y)) +
1

2
|g(x)− g(y)|2 ≤ 4|x− y|2.

In other words, Assumption 3.1 is satisfied with q = 2. Furthermore, it is obvious that

|f(x)| ≤ |x|+ |x|3 ≤ 2(1 + |x|3), ∀x ∈ R.

Namely, Assumption 3.2 holds with r = 3. So far, we have verified that Assumptions 2.1, 2.2,
3.1, 3.2 hold for q = 2, r = 3 and any p > 3. To apply Theorem 3.4, we still need to design
functions µ and h in order for (3.11) to hold for all sufficiently small ∆. Noting that

sup
|x|≤u

(|f(x)| ∨ |g(x)|) ≤ 2u3, ∀u ≥ 1,

we can have µ(u) = 2u3 and its inverse function µ−1(u) = (u/2)1/3 for u ≥ 0. For ε ∈ (0, 1/4],
we define h(∆) = ∆−ε for ∆ > 0. Letting ∆∗ ∈ (0, 1] be sufficiently small, we can make (2.6)
hold. Now, inequality (3.11) becomes

∆−ε ≥ 2(∆1/2−ε)−3/(p−2), namely, 1 ≥ 2∆ε−3(1/2−ε)/(p−2). (3.20)

But, for any ε ∈ (0, 1/4], we can choose sufficiently large p such that ε− 3(1/2− ε)/(p− 2) > 0
and hence (3.20) holds for all sufficiently small ∆. We can therefore conclude by Theorem 3.4
that the truncated EM solutions of the SDE (3.18) satisfy

E|x(T )− x∆(T )|2 = O(∆1/2−ε) and E|x(T )− x̄∆(T )|2 = O(∆1/2−ε).

This example shows that when the truncated EM method is applied to the SDE (3.18), the
order of L2-convergence is close to 1/2 (or, the order of L1-convergence is close to 1/4). Can we
improve the order?

The answer is yes. In the remaining of this section, we will establish a new result which
shows the order of Lq-convergence is close to q/2. This is almost optimal if we recall that the
classical EM method has order q/2 of Lq-convergence under the global Lipschitz condition. For
this almost optimal result, we need slightly stronger condition than Assumption 3.2.

Assumption 3.6 Assume that there is a pair of positive constants ρ and H3 such that

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ H3(1 + |x|ρ + |y|ρ)|x− y|2 (3.21)

for all x, y ∈ R
d.

The following is another key lemma.

Lemma 3.7 Let Assumptions 2.1, 2.2, 3.1 and 3.6 hold and assume that p > q > 2 and 2p > qρ.
Let R > |x0| be a real number and let ∆ ∈ (0,∆∗) be sufficiently small such that µ−1(h(∆)) ≥ R.
Let θ∆,R and e∆(t) be the same as before. Then, for any q̄ ∈ [2, q),

E|e∆(T ∧ θ∆,R)|q̄ ≤ C∆q̄/2(h(∆))q̄, ∀T > 0. (3.22)
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Proof. We use the same notation as in the proof of Lemma 3.3. Clearly, (3.5) holds when q
there is replaced with q̄. Namely, we have

E|e∆(t ∧ θ)|q̄

≤ E

∫ t∧θ

0
q̄|e∆(s)|q̄−2

(

eT∆(s)[f(x(s))− f(x̄∆(s))] +
q̄ − 1

2
|g(x(s))− g(x̄∆(s))|2

)

ds. (3.23)

Noting

q̄ − 1

2
|g(x(s))− g(x̄∆(s))|2

≤ q̄ − 1

2

[(

1 +
q − q̄

q̄ − 1

)

|g(x(s))− g(x∆(s))|2 +
(

1 +
q̄ − 1

q − q̄

)

|g(x∆(s))− g(x̄∆(s))|2
]

=
q − 1

2
|g(x(s))− g(x∆(s))|2 +

(q̄ − 1)(q − 1)

2(q − q̄)
|g(x∆(s))− g(x̄∆(s))|2,

we get from (3.23) that
E|e∆(t ∧ θ)|q̄ ≤ J3 + J4, (3.24)

where

J3 = E

∫ t∧θ

0
q̄|e∆(s)|q̄−2

(

eT∆(s)[f(x(s))− f(x∆(s))] +
q − 1

2
|g(x(s))− g(x∆(s))|2

)

ds (3.25)

and

J4 = E

∫ t∧θ

0
q̄|e∆(s)|q̄−2

(

eT∆(s)[f(x∆(s))− f(x̄∆(s))]

+
(q̄ − 1)(q − 1)

2(q − q̄)
|g(x∆(s))− g(x̄∆(s))|2

)

ds. (3.26)

By Assumption 3.1, we can show easily that

J3 ≤ q̄H1

∫ t

0
E|e∆(s ∧ θ)|q̄ds. (3.27)

By Assumption 3.6, we also have

J4 ≤ (q̄/2)

∫ t

0
E|e∆(s ∧ θ)|q̄ds+ J5, (3.28)

where

J5 = C E

∫ t∧θ

0

(

|e∆(s)|q̄−2(1 + |x∆(s)|ρ + |x̄∆(s)|ρ)|x∆(s)− x̄∆(s)|2
)

ds.

By the Young inequality etc., we derive that

J5 ≤ C

∫ t

0
E|e∆(s ∧ θ)|q̄ds

+ C

∫ T

0
E

(

(1 + |x∆(s)|ρq̄/2 + |x̄∆(s)|ρq̄/2)|x∆(s)− x̄∆(s)|q̄
)

ds. (3.29)

In the same way as (3.10) was proved, we can then show

J5 ≤ C

∫ t

0
E|e∆(s ∧ θ)|q̄ds+ C∆q̄/2(h(∆))q̄. (3.30)
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Putting (3.30) into (3.28) and then substituting it and (3.27) into (3.24), we get

E|e∆(t ∧ θ)|q̄ ≤ C

∫ t

0
E|e(s ∧ θ)|q̄ds+ C∆q̄/2(h(∆))q̄.

By the Gronwall inequality, we obtain the required assertion (3.22). 2

The following theorem shows a higher order of Lq̄-convergence of the truncated EM method.

Theorem 3.8 Let Assumptions 2.1, 2.2, 3.1 and 3.6 hold with p > q > 2 and 2p > qρ. Let
q̄ ∈ [2, q). If

h(∆) ≥ µ
(

[∆q̄/2(h(∆))q̄]−1/(p−q̄)
)

(3.31)

for all sufficiently small ∆ ∈ (0,∆∗), then, for every such small ∆,

E|x(T )− x∆(T )|q̄ ≤ C∆q̄/2(h(∆))q̄ and E|x(T )− x̄∆(T )|2 ≤ C∆q̄/2(h(∆))q̄. (3.32)

Proof. We use the same notation as in the proof of Theorem 3.4. Clearly, (3.15) holds if q there
is replaced with q̄. Choosing δ = ∆q̄/2(h(∆))q̄ and R = [∆q̄/2(h(∆))q̄]−1/(p−q̄), we then obtain

E|e∆(T )|q̄ ≤ E|e∆(T ∧ θ∆,R)|q̄ + C∆q̄/2(h(∆))q̄. (3.33)

But, by condition (3.31), we have

µ−1(h(∆)) ≥ [∆q̄/2(h(∆))q̄]−1/(p−q̄) = R.

We can hence apply Lemma 3.7 to obtain

E|e∆(T ∧ θ∆,R)|q̄ ≤ C∆q̄/2(h(∆))q̄. (3.34)

Substituting this into (3.33) yields the first inequality in (3.32). The second inequality there
follows from the first one and Lemma 2.5. 2

Example 3.9 (Continuation of Example 3.5) Let us now return to the SDE (3.18). Re-
calling (3.19), we can easily show that, for any x, y ∈ R,

(x− y)(f(x)− f(y)) + |g(x)− g(y)|2 ≤ 12|x− y|2

and
|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ 12(1 + |x|4 + |y|4)|x− y|2.

In other words, Assumptions 3.1 and 3.6 are satisfied with q = 3 and ρ = 4. We hence have
that Assumptions 2.1, 2.2, 3.1, 3.6 hold for q = 3, ρ = 4 and any p > 6. To apply Theorem 3.8,
we let q̄ = 2 and still choose µ(u) = 2u3 but let h(∆) = ∆−ε/2 for ε ∈ (0, 1/2]. Then, inequality
(3.31) becomes

∆−ε/2 ≥ 2∆−3(1−ε)/(p−2), namely, 1 ≥ 2∆ε/2−3(1−ε)/(p−2). (3.35)

But, for any ε ∈ (0, 1/2], we can choose sufficiently large p such that ε/2 > 3/(p− 2) and hence
(3.35) holds for all sufficiently small ∆. We can therefore conclude by Theorem 3.8 that the
truncated EM solutions of the SDE (3.18) satisfy

E|x(T )− x∆(T )|2 = O(∆1−ε) and E|x(T )− x̄∆(T )|2 = O(∆1−ε).

That is, the order of L2-convergence can be arbitrarily close to 1.
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4 Convergence Rates over a Finite Time Interval

In the previous section, we showed that both truncated EM solutions x∆(T ) and x̄∆(T ) will
converge to the true solution x(T ) in Lq̄ for any T > 0. This is sufficient for some applications e.g.
when we need to approximate the European put or call option value (see, e.g., [8]). However, we
sometimes need to approximate quantities that are path-dependent, for example, the European
barrier option value. In these situations, we will need the strong convergence for a numerical
solution to the true solution over a finite time interval (see, e.g., [7]). Let us now begin to discuss
the convergence rates over the time interval [0, T ]. We need a stronger assumption.

Assumption 4.1 Assume that there is a pair of positive constants γ and H such that

(x− y)T (f(x)− f(y)) ≤ H|x− y|2, (4.1)

|f(x)− f(y)|2 ≤ H(1 + |x|γ + |y|γ)|x− y|2, (4.2)

|g(x)− g(y)|2 ≤ H|x− y|2 (4.3)

for all x, y ∈ R
d.

These conditions are the same as those imposed in [9, Assumptions 3.1 and 4.1]. Under
these conditions, it was showed in [9] that either the split step backward Euler solution or the
backward Euler solution converge to the true solution over the finite time interval [0, T ] in L2

with order 1 (i.e., half in L1). In this section, we will show that under these same conditions,
the the truncated EM solution will converge to the true solution over the finite time interval
[0, T ] in Lq with order close to q/2.

Before we proceed to establish our theory, we need to make a remark which will make our
proof of Theorem 4.6 below more clear.

Remark 4.2 We observe that Assumption 4.1 implies all assumptions we imposed so far in this
paper. In fact, Assumption 2.1, 3.2 and 3.6 follows from Assumption 4.1 obviously. We now
show that Assumption 2.2 is satisfied for any p > 2. In fact,

xT f(x) +
p− 1

2
|g(x)|2

≤ xT f(0) + xT (f(x)− f(0)) + (p− 1)|g(0)|2 + (p− 1)|g(x)− g(0))|2
≤ 0.5|f(0)|2 + p|g(0)|2 + (0.5 + pH)|x|2
≤ K(1 + |x|2),

where K = (0.5|f(0)|2 + p|g(0)|2) ∨ (0.5 + pH). Similarly, we can show that Assumption 3.1
holds for any q ≥ 2.

We therefore see that all the results in Sections 2 and 3 hold under Assumption 4.1. Of course,
under the stronger Assumption 4.1, we will be able to show the convergence rate for the paths
of the solution. The following lemma is a key.

Lemma 4.3 Let Assumption 4.1 hold. Let R > |x0| be a real number and let ∆ ∈ (0,∆∗) be
sufficiently small such that µ−1(h(∆)) ≥ R. Let θ∆,R and e∆(t) be the same as before. Let q ≥ 2
be arbitrary. Then

E

(

sup
0≤u≤T∧θ∆,R

|e∆(u)|q
)

≤ C∆q/2(h(∆))q, ∀T > 0. (4.4)
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Proof. Again write θ∆,R = θ. By the Itô formula, we have that, for 0 ≤ t ≤ T ,

E

(

sup
0≤u≤t∧θ

|e∆(u)|q
)

≤ E

(

sup
0≤u≤t∧θ

∫ u

0
q|e∆(s)|q−2

[

eT∆(s)[f(x(s))− f∆(x̄∆(s))]

+
q − 1

2
|g(x(s))− g∆(x̄∆(s))|2

]

ds
)

+ E

(

sup
0≤u≤t∧θ

∫ u

0
q|e∆(s)|q−2eT∆(s)[g(x(s))− g∆(x̄∆(s))]dB(s)

)

. (4.5)

As explained in the proof of Lemma 3.3, we see that

f∆(x̄∆(s)) = f(x̄∆(s)) and g∆(x̄∆(s)) = g(x̄∆(s)) for 0 ≤ s ≤ t ∧ θ.

It therefore follows from (4.5) that

E

(

sup
0≤u≤t∧θ

|e∆(u)|2
)

≤ J6 + J7, (4.6)

where

J6 = E

(

sup
0≤u≤t∧θ

∫ u

0
q|e∆(s)|q−2

[

eT∆(s)[f(x(s))− f(x̄∆(s))]

+
q − 1

2
|g(x(s))− g(x̄∆(s))|2

]

ds
)

and

J7 = E

(

sup
0≤u≤t∧θ

∫ u

0
q|e∆(s)|q−2eT∆(s)[g(x(s))− g(x̄∆(s))]dB(s)

)

.

By Assumption 4.1, we derive that

J6 ≤ E

(

sup
0≤u≤t∧θ

∫ u

0
q|e∆(s)|q−2

[

eT∆(s)[f(x(s))− f(x∆(s))] + eT∆(s)[f(x∆(s))− f(x̄∆(s))]

+
q − 1

2
|g(x(s))− g(x̄∆(s))|2

]

ds
)

≤ E

∫ t∧θ

0
q|e∆(s)|q−2

[

(H + 1)|e∆(s)|2 + |f(x∆(s))− f(x̄∆(s))|2

+H(q − 1)(|e∆(s)|2 + |x∆(s)− x̄∆(s)|2)
]

ds
)

≤ E

∫ t∧θ

0
q(Hq + 1)|e∆(s)|q−2

[

|e∆(s)|2 + (1 + |x∆(s)|γ + |x̄∆(s)|γ)|x∆(s)− x̄∆(s)|2
)

≤ 2q(Hq + 1)

∫ t

0
E|e∆(s ∧ θ)|qds

+ q(Hq + 1)

∫ T

0
E

[

(1 + |x∆(s)|γ + |x̄∆(s)|γ)q/2|x∆(s)− x̄∆(s)|q
]

ds. (4.7)

In the same way as Lemmas 3.3 and 3.7 were proved, we can then further show that

J6 ≤ 2q(Hq + 1)

∫ t

0
E|e∆(s ∧ θ)|qds+ C∆q/2(h(D))q. (4.8)
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Moreover, by the Burkholder–Davis–Gundy inequality (see, e.g., [21]) and Assumption 4.1, we
derive that

J7 ≤ 4
√
2qE

([

∫ t∧θ

0
|eT∆(s)|2(q−1)|g(x(s))− g(x̄∆(s))|2ds

]1/2)

≤ 4
√
2qHE

(

sup
0≤u≤t∧θ

|e∆(u)|q
[

∫ t∧θ

0
|eT∆(s)|q−2|x(s)− x̄∆(s)|2ds

]1/2)

≤ 1

2
E

(

sup
0≤u≤t∧θ

|e∆(u)|q
)

+ 16q2H2
E

∫ t∧θ

0
|eT∆(s)|q−2|x(s)− x̄∆(s)|2ds.

But, by the Young inequality,

|eT∆(s)|q−2|x(s)− x̄∆(s)|2 ≤
q − 2

q
|eT∆(s)|q +

2

q
|x(s)− x̄∆(s)|q.

Hence

J7 ≤ 1

2
E

(

sup
0≤u≤t∧θ

|e∆(u)|q
)

+ 16q(q − 2)H2
E

∫ t∧θ

0
|e∆(s)|qds

+ 32qH2

∫ T

0
E|x∆(s)− x̄∆(s)|qds

≤ 1

2
E

(

sup
0≤u≤t∧θ

|e∆(u)|q
)

+ 16q(q − 2)H2

∫ t

0
E

(

sup
0≤u≤s∧θ

|e∆(u)|q
)

ds

+ C∆q/2(h(∆))q, (4.9)

where we have used Lemma 2.5 in the last step. Substituting (4.8) and (4.9) into (4.6), we get

E

(

sup
0≤u≤t∧θ

|e∆(u)|q
)

≤ C

∫ t

0
E

(

sup
0≤u≤s∧θ

|e∆(u)|q
)

ds+ C∆q/2(h(∆))q. (4.10)

Finally, the Gronwall inequality yields the required assertion (4.4). 2

We also cite a couple of results from [23] as lemmas which we will need to prove our main
theorem in this section.

Lemma 4.4 Let Assumption 4.1 hold. Then, for any p ≥ 2,

E

(

sup
0≤t≤T

|x(t)|p
)

≤ C (4.11)

and
sup

0<∆≤∆∗

E

(

sup
0≤t≤T

|x∆(t)|p
)

≤ C. (4.12)

Lemma 4.5 Let q ≥ 2 and ∆ ∈ (0,∆∗]. Let n be a sufficiently large integer for which

( 2n

2n− 1

)q
(T + 1)q/2n ≤ 2 and

n− 1

2n
>

1

3
. (4.13)

We then have
E

(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|q
)

≤ 2q+1nq/2(h(∆))q∆q(n−1)/2n. (4.14)
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Before we state our theorem in this section, let us remark that it is straightforward to see
from Assumption 4.1 that

sup
|x|≤u

(|f(x)| ∨ |g(x)|) ≤ H̄|x|1+γ , ∀u ≥ 1, (4.15)

where H̄ = |f(0)| + |g(0)| + 2
√
H. It should be pointed out that this inequality holds if γ is

replaced by γ/2 but this will not affect the proof of the following theorem. In fact, every thing
in the statement and proof of the theorem will work if γ is replaced by γ/2.

Theorem 4.6 Let Assumption 4.1 hold and ε ∈ (0, 1/2) be arbitrary. Define

µ(u) = H̄u1+γ , u ≥ 0

and
h(∆) = ∆−ε/2, ∆ ∈ (0, 1]

Letting ∆∗ ∈ (0, 1] be sufficiently small, we can make (2.6) hold. Then, for any q ≥ 2, the
truncated EM solutions satisfy

E

(

sup
0≤t≤T

|x∆(t)− x(t)|q
)

= O(∆q(1−ε)/2) (4.16)

and
E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|q
)

= O(∆q(1−ε)/2). (4.17)

Proof. Let e∆(t) and θ∆,R be the same as defined in the proof of Lemma 3.3. Recalling Remark
4.2, we know that all of the assumptions in sections 2 and 3 are satisfied under Assumption 4.1.
In particular, we can choose p > 2 as large as we need for Assumption 2.2 to hold. For our
proof, we choose p > q ∨ (1 + γ) sufficiently large such that

ε

2
>

q(1 + γ)

2(p− q)
. (4.18)

Using the Young inequality, we can show that, for any ∆ ∈ (0,∆∗), δ > 0 and R > |x0|,

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ E

(

I{θ∆,R>T} sup
0≤t≤T

|e∆(t)|q
)

+
qδ

p
E

(

sup
0≤t≤T

|e∆(t)|q
)

+
p− q

pδq/(p−q)
P(θ∆,R ≤ T ). (4.19)

By Lemmas 4.4, 2.7 and 2.8, we can then have

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ E

(

I{θ∆,R>T} sup
0≤t≤T

|e∆(t)|q
)

+
Cqδ

p
+

C(p− q)

pRpδq/(p−q)
. (4.20)

We therefore see that the inequality

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ E

(

sup
0≤t≤T

|e∆(t ∧ θ∆,R)|q
)

+
Cqδ

p
+

C(p− q)

pRpδq/(p−q)
(4.21)

holds for any ∆ ∈ (0,∆∗), δ > 0 and R > |x0|. Choosing δ = ∆q(1−ε)/2 and R = ∆−q(1−ε)/2(p−q),
we then get

E

(

sup
0≤t≤T

|e∆(t)|q
)

≤ E

(

sup
0≤t≤T

|e∆(t ∧ θ∆,R)|q
)

+ C∆q(1−ε)/2 (4.22)
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for any ∆ ∈ (0,∆∗). On the other hand, by (4.18), we see that

∆−ε/2 ≥ H̄∆−q(1−ε)(1+γ)/2(p−2)

for all sufficiently small ∆. For every such small ∆, we then have

µ−1(h(∆)) ≥ ∆−q(1−ε)/2(p−q) = R.

By Lemma 4.3, we hence get from (4.22) that

E

(

sup
0≤t≤T

|e∆(t)|2
)

≤ C∆q(1−ε)/2 (4.23)

for every sufficiently small ∆. In other words, the required assertion (4.16) has been proved.
To show (4.17), we choose an integer n > 1/ε sufficiently large for (4.13) to hold and then, by
Lemma 4.5, we have

E

(

sup
0≤t≤T

|x∆(t)− x̄∆(t)|2
)

≤ C∆q(1−2ε)/2, ∀∆ ∈ (0,∆∗).

This, together with (4.23), implies

E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|2
)

≤ C∆q(1−2ε)/2 (4.24)

for all sufficiently small ∆. In other words,

E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|2
)

= O(∆q(1−2ε)/2).

As ε ∈ (0, 1/2) is arbitrary, we must therefore have (4.17) as desired. 2

Example 4.7 To illustrate this theorem, let us consider the scalar SDE

dx(t) = ax(t)(b− x2(t))dt+ cx(t)dB(t), t ≥ 0, x(0) = x0 ∈ R, (4.25)

where a, b, c are all positive numbers. This is known as the stochastic Ginzburg–Landau equation
(see, e.g., [6, 18]) or the power logistic model (see, e.g., [3]). It is known (see, e.g., [10, 13]) that
the second moment of the EM solution to the SDE (4.25) will blow up so will not converge to
the true solution in L2. However, by our theory, we will see that the truncated EM solutions
will converge to the true solution in L2 with order close to 1. In fact, it is easy to verify that
the coefficients f(x) = ax(b− x2) and g(x) = cx satisfy Assumption 4.1 and

sup
|x|≤u

(|f(x)| ∨ |g(x)|) ≤ H̄|x|3, ∀u ≥ 1,

where H̄ = a(b+1)∨ c. Let ε ∈ (0, 1/2] be arbitray. Define µ(u) = H̄u3 and h(∆) = ∆−ε/2. By
Theorem 4.6, we can then conclude that the truncated EM solutions of the SDE (4.25) satisfy

E

(

sup
0≤t≤T

|x∆(t)− x(t)|2
)

= O(∆1−ε) and E

(

sup
0≤t≤T

|x̄∆(t)− x(t)|2
)

= O(∆1−ε).

To support our theoretical results, we perform numerical simulations for the SDE

dx(t) = 0.1x(t)(1− x2(t))dt+ 0.2x(t)dB(t), 0 ≤ t ≤ 1, x(0) = 2. (4.26)

It was proved in [9] that the backward EM method applied to the SDE (4.26) has the order
0.5 in L1-convergence (or 1 in L2). It is therefore sufficient to compare our new truncated EM

15



(TEM) with the backward EM (BEM). We will hence use the TEM and BEM to carry out the
numerical simulations (and we choose ε = 0.5 for the TEM). Figure 5.1 shows the computer
simulations of the sample paths of x(t) by the TEM and BEM, respectively, with stepsize 10−5.
We see that both sample paths are almost identical. We also perform 1000 sample paths of the
TEM and BEM solutions for each of stepsizes 10−3,10−4, 10−5 and 10−6. The log-log plot of
the strong errors against the stepsizes is shown in Figure 5.2. Comparing it with the dashed
reference line of slop 1, we observe that the order of the strong error between the TEM and
BEM is 1. But the BEM method has order 0.5 in L1-convergence so we see that our TEM also
has the order 0.5 in L1-convergence. This supports our theoretical results.

0.0 0.2 0.4 0.6 0.8 1.0

1
.4

1
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1
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1
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2
.0

t

x(
t)
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BEM

Figure 5.1: Computer simulations of a sample path of x(t) by the TEM and BEM with stepsize 10−5:
red for TEM and black for BEM.

5 Conclusions

This is the continuation of our recent paper [23], where the truncated EM method was initiated
for the multi-dimensional nonlinear SDEs. Under some additional conditions to those imposed
in [23], we have discussed the Lq-convergence rates of the truncated EM method and showed
that the order of Lq-convergence could be arbitrarily close to q/2. Several examples have been
discussed to illustrate our theory. The computer simulations also support our theoretical results.
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