80 research outputs found

    Bayesian Networks for Max-linear Models

    Full text link
    We study Bayesian networks based on max-linear structural equations as introduced in Gissibl and Kl\"uppelberg [16] and provide a summary of their independence properties. In particular we emphasize that distributions for such networks are generally not faithful to the independence model determined by their associated directed acyclic graph. In addition, we consider some of the basic issues of estimation and discuss generalized maximum likelihood estimation of the coefficients, using the concept of a generalized likelihood ratio for non-dominated families as introduced by Kiefer and Wolfowitz [21]. Finally we argue that the structure of a minimal network asymptotically can be identified completely from observational data.Comment: 18 page

    Faithfulness and learning hypergraphs from discrete distributions

    Full text link
    The concepts of faithfulness and strong-faithfulness are important for statistical learning of graphical models. Graphs are not sufficient for describing the association structure of a discrete distribution. Hypergraphs representing hierarchical log-linear models are considered instead, and the concept of parametric (strong-) faithfulness with respect to a hypergraph is introduced. Strong-faithfulness ensures the existence of uniformly consistent parameter estimators and enables building uniformly consistent procedures for a hypergraph search. The strength of association in a discrete distribution can be quantified with various measures, leading to different concepts of strong-faithfulness. Lower and upper bounds for the proportions of distributions that do not satisfy strong-faithfulness are computed for different parameterizations and measures of association.Comment: 23 pages, 6 figure

    Parameter identifiability of discrete Bayesian networks with hidden variables

    Full text link
    Identifiability of parameters is an essential property for a statistical model to be useful in most settings. However, establishing parameter identifiability for Bayesian networks with hidden variables remains challenging. In the context of finite state spaces, we give algebraic arguments establishing identifiability of some special models on small DAGs. We also establish that, for fixed state spaces, generic identifiability of parameters depends only on the Markov equivalence class of the DAG. To illustrate the use of these results, we investigate identifiability for all binary Bayesian networks with up to five variables, one of which is hidden and parental to all observable ones. Surprisingly, some of these models have parameterizations that are generically 4-to-one, and not 2-to-one as label swapping of the hidden states would suggest. This leads to interesting difficulties in interpreting causal effects.Comment: 23 page

    Direct Cause

    Get PDF
    An interventionist account of causation characterizes causal relations in terms of changes resulting from particular interventions. We provide an example of a causal relation for which there does not exist an intervention satisfying the common interventionist standard. We consider adaptations that would save this standard and describe their implications for an interventionist account of causation. No adaptation preserves all the aspects that make the interventionist account appealing
    • …
    corecore