3,975 research outputs found

    Multi-scale Discriminant Saliency with Wavelet-based Hidden Markov Tree Modelling

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between centre and surround classes. Discriminant power of features for the classification is measured as mutual information between distributions of image features and corresponding classes . As the estimated discrepancy very much depends on considered scale level, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden Markov Tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, a saliency value for each square block at each scale level is computed with discriminant power principle. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multi-scale discriminant saliency (MDIS) method against the well-know information based approach AIM on its released image collection with eye-tracking data. Simulation results are presented and analysed to verify the validity of MDIS as well as point out its limitation for further research direction.Comment: arXiv admin note: substantial text overlap with arXiv:1301.396

    Comparing the Performance of Random Forest, SVM and Their Variants for ECG Quality Assessment Combined with Nonlinear Features

    Get PDF
    For evaluating performance of nonlinear features and iterative and non-iterative classification algorithms (i.e. kernel support vector machine (KSVM), random forest (RaF), least squares SVM (LS-SVM) and multi-surface proximal SVM based oblique RaF (ORaF) for ECG quality assessment we compared the four algorithms on 7 feature schemes yielded from 27 linear and nonlinear features including four features derived from a new encoding Lempel–Ziv complexity (ELZC) and the other 26 features. Seven feature schemes include the first scheme consisting of 7 waveform features, the second consisting of 15 waveform and frequency features, the third consisting of 19 waveform, frequency and approximate entropy (ApEn) features, the fourth consisting of 19 waveform, frequency and permutation entropy (PE) features, the fifth consisting of 19 waveform, frequency and ELZC features, the sixth consisting of 23 waveform, frequency, PE and ELZC features, and the last consisting of all 27 features. Up to 1500 mobile ECG recordings from the Physionet/Computing in Cardiology Challenge 2011 were employed in this study. Three indices i.e., sensitivity (Se), specificity (Sp) and accuracy (Acc), were used for evaluating performances of the classifiers on the seven feature schemes, respectively. The experiment results indicated PE and ELZC can help to improve performance of the aforementioned four classifiers for assessing ECG quality. Using all features except ApEn features obtained the best performances for each classifier. For this sixth scheme, the LS-SVM yielded the highest Acc of 92.20% on hidden test data, as well as a relatively high Acc of 93.60% on training data. Compared with the other classifiers, the LS-SVM classifier also demonstrated the superior generalization ability

    SANTO: Social Aerial NavigaTion in Outdoors

    Get PDF
    In recent years, the advances in remote connectivity, miniaturization of electronic components and computing power has led to the integration of these technologies in daily devices like cars or aerial vehicles. From these, a consumer-grade option that has gained popularity are the drones or unmanned aerial vehicles, namely quadrotors. Although until recently they have not been used for commercial applications, their inherent potential for a number of tasks where small and intelligent devices are needed is huge. However, although the integrated hardware has advanced exponentially, the refinement of software used for these applications has not beet yet exploited enough. Recently, this shift is visible in the improvement of common tasks in the field of robotics, such as object tracking or autonomous navigation. Moreover, these challenges can become bigger when taking into account the dynamic nature of the real world, where the insight about the current environment is constantly changing. These settings are considered in the improvement of robot-human interaction, where the potential use of these devices is clear, and algorithms are being developed to improve this situation. By the use of the latest advances in artificial intelligence, the human brain behavior is simulated by the so-called neural networks, in such a way that computing system performs as similar as possible as the human behavior. To this end, the system does learn by error which, in an akin way to the human learning, requires a set of previous experiences quite considerable, in order for the algorithm to retain the manners. Applying these technologies to robot-human interaction do narrow the gap. Even so, from a bird's eye, a noticeable time slot used for the application of these technologies is required for the curation of a high-quality dataset, in order to ensure that the learning process is optimal and no wrong actions are retained. Therefore, it is essential to have a development platform in place to ensure these principles are enforced throughout the whole process of creation and optimization of the algorithm. In this work, multiple already-existing handicaps found in pipelines of this computational gauge are exposed, approaching each of them in a independent and simple manner, in such a way that the solutions proposed can be leveraged by the maximum number of workflows. On one side, this project concentrates on reducing the number of bugs introduced by flawed data, as to help the researchers to focus on developing more sophisticated models. On the other side, the shortage of integrated development systems for this kind of pipelines is envisaged, and with special care those using simulated or controlled environments, with the goal of easing the continuous iteration of these pipelines.Thanks to the increasing popularity of drones, the research and development of autonomous capibilities has become easier. However, due to the challenge of integrating multiple technologies, the available software stack to engage this task is restricted. In this thesis, we accent the divergencies among unmanned-aerial-vehicle simulators and propose a platform to allow faster and in-depth prototyping of machine learning algorithms for this drones
    • …
    corecore