4 research outputs found

    Decentralised Workload Scheduler for Resource Allocation in Computational Clusters

    Get PDF
    This paper presents a detailed design of a decentralised agent-based scheduler, which can be used to manage workloads within the computing cells of a Cloud system. Our proposed solution is based on the concept of service allocation negotiation, whereby all system nodes communicate between themselves, and scheduling logic is decentralised. The presented architecture has been implemented, with multiple simulations run using real-world workload traces from the Google Cluster Data project. The results were then compared to the scheduling patterns of Google’s Borg system

    Strong agent mobility for aglets based on the IBM JikesRVM

    No full text

    Strong Agent Mobility for Aglets based on the IBM JikesRVM

    No full text
    Mobility enables agents to migrate among several hosts, becoming active entities of networks. Java is today one of the most exploited languages to build mobile agent systems, thanks to its object-oriented support, portability and network facilities. Nevertheless, Java does not support strong mobility, i.e., the mobility of threads along with their execution state; thus developers cannot develop agents as real mobile entities. This paper reports our approach for Java thread strong migration, based on the IBM Jikes Research Virtual Machine, presenting our results and proposing an enrichment of the Aglets mobile agent platform in order to exploit strong agent mobility

    Intelligent Load Balancing in Cloud Computer Systems

    Get PDF
    Cloud computing is an established technology allowing users to share resources on a large scale, never before seen in IT history. A cloud system connects multiple individual servers in order to process related tasks in several environments at the same time. Clouds are typically more cost-effective than single computers of comparable computing performance. The sheer physical size of the system itself means that thousands of machines may be involved. The focus of this research was to design a strategy to dynamically allocate tasks without overloading Cloud nodes which would result in system stability being maintained at minimum cost. This research has added the following new contributions to the state of knowledge: (i) a novel taxonomy and categorisation of three classes of schedulers, namely OS-level, Cluster and Big Data, which highlight their unique evolution and underline their different objectives; (ii) an abstract model of cloud resources utilisation is specified, including multiple types of resources and consideration of task migration costs; (iii) a virtual machine live migration was experimented with in order to create a formula which estimates the network traffic generated by this process; (iv) a high-fidelity Cloud workload simulator, based on a month-long workload traces from Google's computing cells, was created; (v) two possible approaches to resource management were proposed and examined in the practical part of the manuscript: the centralised metaheuristic load balancer and the decentralised agent-based system. The project involved extensive experiments run on the University of Westminster HPC cluster, and the promising results are presented together with detailed discussions and a conclusion
    corecore