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Abstract: This paper presents a detailed design of a decentralised agent-based scheduler, which 

can be used to manage workloads within the computing cells of a Cloud system. This scheme in 

based on the concept of service allocation negotiation, whereby all system nodes communicate 

between themselves and scheduling logic is decentralised. The architecture presented has been 

implemented, with multiple simulations run using real-word workload traces from the Google 

Cluster Data project. The results were then compared to the scheduling patterns of Google’s Borg 

system. 
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1. INTRODUCTION 
Cloud computing has become a very widespread phenomenon in daily lives, especially if we 

consider how accepted smart phones are. A typical phone application is heavily depended on 

infrastructure and remote processing capabilities Clouds deliver. Also, in desktop computer’s 

programs area, a significant number of applications have been moved into Software-as-a-Service 

model, where desktop serves only as a client, but actual processing is done on a remote Cloud, 

e.g.: business subscriptions for Microsoft Office 365 offer access to cloud-hosted versions of 

Office programs. Therefore, the current world is more and more reliant on Cloud computing. 

A variety of vendors, services and business models have created an extremely complex 

environment. The latest developments in Cloud technologies gravitate towards federated, inter-

Cloud cooperative models and, therefore, already very complex solutions are destined to become 

even more complex. It’s is also a very competitive market. A recent rise in Big Data systems fuelled 

a growth in demand of cheap computing power; however, a number of vendors joined and 

market offering computing services has greatly expanded. It also has driven prices down; a 4GB 

machine with Intel Xeon (Haswell) cores can be rented out for as little as two cents per hour.  

The main difference between a Cluster and a Cloud is business model and access. Clusters were 

traditionally available only to a very limited number of institutions and corporations, who pooled 

their resources in order to get advantage of scale of computing. Public generally did not have 

access to computing capabilities of Clusters. 

Because access to Clusters was very restricted and incoming workload was planned well in 

advance, it was practical to centralise task scheduling and system management functions. 
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Therefore, a centralised architecture was generally used a base for Cluster management software, 

such as SLURM (Yoo et al., 2003), Maui (Jackson et al., 2001), Univa Grid Engine (Gentzsch, 2001), 

etc. 

One of the most developed and published Cluster managers is Google’s Borg system. The current 

concept behind Borg is to deploy several schedulers working in parallel. The scheduler instances 

are using a share state of available resources; however, the resource offers are not locked during 

scheduling decisions (optimistic concurrency control). In case of conflict, when two or more 

schedulers allocated jobs to the same resources, all involved jobs are returned to the jobs queue 

and scheduling is re-tried (Schwarzkopf et al., 2013). When allocating a task, Borg’s scheduler is 

scoring a set of available nodes (best-fit algorithm) and selects the most feasible machine for this 

task. The central module of Borg architecture is BorgMaster, which maintains an in-memory copy 

of most of the state of the cell. Each machine in a cell is running BorgLet, an agent process 

responsible for starting and stopping tasks and also restarting them if they fail. A single 

BorgMaster controller is able to manage a cell of more than 12k machines (highest value is not 

specified). Google’s engineers achieved this impressive result by a number of optimisations and, 

so far, they’ve managed to eliminate or work around virtually every limitation they have 

approached (Verma et al., 2015). Nevertheless, a centralised architecture is a limitation within a 

current design of a Cloud. 

One might also ask a fundamental question – do Cloud systems really require more inter-

connected nodes in one cell? Computing power of 12k machines working together is already a 

very considerable force and, barring few exceptions, it’s highly unlikely that an application would 

require such a processing power. However, in recent years, software development is trending 

towards Big Data systems. Big Data systems are characterised by a high degree of parallelism. A 

typical Big Data system design is based on a distributed file system, where nodes have dual 

function of storing data as well as processing it. One process of such system might need to crunch 

thousands of TBs of data split across thousands of nodes. Even with ideal allocation of Big Data 

tasks, where every task is processing data only available locally (i.e. locality optimisation), a single 

node would still need to process GBs of data locally. Therefore, the answer to the above question 

is yes – it’s highly likely that we will require larger computing cells in the near future.  

Therefore, since centralised architectures have their ultimate scalability limits, we shall consider 

alternative approaches. In this paper we present a working prototype of decentralised Cloud 

manager – Multi-Agent System Balancer (MASB), which relies on a network of software agents to 

organically distribute and manage good system load. MASB prototype has been built on top of 

AGOCS framework (Sliwko and Getov, 2016) and such all research and development has been 

continuously tested on real-world workload traces from Google Cloud. 

The remaining of this paper is organised as follows. Section two provides introduction to agent 

systems and a brief of research history how they have been used to schedule tasks. Section three 

describes MASB’s design principles, defines scope of project and lists all main used technologies. 

Section four has details about MASB architecture and its objects. Section five present allocation 

score functions, which are modelling distribution of tasks and their allocations across nodes 

through tasks’ lifecycles. Section six describes in detail the allocation negotiation protocol that is 

used between system components to allocate new task or re-allocate existing task on a node. 

Section seven specifies experiments, which were performed as a part of his research and provides 

a discussion on achieved results. Section eight describes competitive solutions. Section nine 

provides a summary of important optimisations and lessons learnt along with the conclusions. 
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2. LOAD BALANCING WITH AGENTS 
Agent technologies can be dated back to 1992 (Sargent, 1992), at which point it was predicted 

that intelligent agent would become the next mainstream computing paradigm. Agents were 

described as the most important step in software engineering, as well as a new revolution in 

software (Guilfoyle and Warner, 1994). Since its inception, the field of multi-agent systems has 

experienced an impressive evolution, and today it is an established and vibrant field in computer 

studies. By its nature, software agents research field spans across many related disciplines, 

including mathematics, logic, game theory, cognitive psychology, sociology, organization science, 

economics, philosophy, and so on (Weiss, 2013). Agents are considered to be a viable solution for 

large-scale systems, for example through spam-filtering and traffic light control (Brenner et al., 

2012), or by managing an electricity gird (Brazier et al., 2002). 

Software agents are found across many computer science disciplines, including AI, decentralised 

systems, self-organising systems, load balancing and expert systems (Guilfoyle and Warner, 1994; 

Milano and Roli, 2004; Cabri et al. 2006). Previous research has also shown that by deploying 

agents it is possible to achieve good global system performance (Nguyen et al., 2006), improve 

system stability and reduce downtime (Corsava and Getov, 2003), attain dynamic adaptation 

capability (Kim et al., 2004) and to realise robustness and fault-tolerance (Xu and Wims, 2000). 

Agents were also found to be useful for the performance monitoring of distributed systems 

(Brooks et al., 1997). Several additional benefits may also be obtained, including more cost-

effective resource planning (Buyya, 1999), a reduction of network traffic (Montresor et al., 2002), 

the autonomous activities of the agents (Goodwin, 1995), and decentralised network 

management (Yang et al., 2005).  

It is difficult to argue for any precise definition of an agent, although it is generally defined as a 

component of software and/or hardware capable of acting independently in order to accomplish 

tasks on behalf of its user (Nwana, 1996). An agent can be described as a being which is supposed 

to act intelligently according to environmental changes and the user’s input (Goodwin, 1995). 

The research literature seems to suggest there are four key properties of an Agent (Castelfranchi, 

1994; Gensereth and Ketchpel, 1994; Wooldridge and Jennings, 1995): 

• Autonomy when allowing agents to operate without direct human intervention; 

• Social ability when agents communicate and interact with other agents; 

• Reactivity when agents actively perceive their environment (physical or digital) and act 

on its changes; 

• Pro-activeness when agents not only respond to changes in environments but are also 

able to take initiative and exhibit goal-oriented behaviour. 

Agent-based systems often rely on decentralised architecture (Jones and Brickell, 1997; Shi et al., 

2005), considering it to be more reliable. However, resources are handled through much more 

complex algorithms, with negotiation schemas often being required for distributed architecture 

to attain a good level of performance (Bigham and Du., 2003; Yang, 2005).  

The idea of job scheduling with agents is not new; a single-machine multi-agent scheduling 

problem was introduced in 2003 (Baker and Smith, 2003) and (Agnetis et al., 2004). The problem 

since then has been extended, and at present exists in several variations, such as deteriorating 

jobs (Liu and Tang, 2008), the introduction of weighted importance (Nong et al., 2011), scheduling 
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with partial information (Long et al., 2011), global objective functions (Tuong et al., 2012), and 

adding jobs' release times and deadlines (Yin et al., 2013). 

All this previous research has contributed immensely to the state of knowledge, with the papers 

below in particular having influenced the design of the MASB.  

• (Schaerf et al., 1995) presents a study about a multi-agent system in which all decision 

making is performed by a learning AI. The likeness of selection of a particular node for the 

processing of a given task depends on the past capacity of this node. The Agent’s AI uses only 

locally-accessible knowledge, meaning that it does not rely on information shared by other agents. 

• (Chavez et al., 1997) introduces Challenger, a multi-agent system, in which agents 

communicate with each other to share their available resources, in an attempt to utilise them 

more fully. In Challenger, agents act as buyers and sellers in a resources marketplace, always 

trying to maximise their own utility. MASB follows like pattern in of nodes trying to maximise its 

allocation (utilisation) score. The cooperative model in which agents negotiate between 

themselves is the base of distributed scheduling presented in this research. 

• (Bigham and Du, 2003) shows that cooperative negotiation between agents representing 

base stations in a mobile cellular network can lead to a near global optimal coverage agreement 

within the context of the whole cellular network. Instead of using a negotiation model of 

alternating offers, a number of possible local hypotheses are created and parallel negotiations 

are initiated based on them. The system commits to the best agreement found within a defined 

timeline. 

• (Kim et al., 2004) proposes a load-balancing scheme in which a mobile agent pre-

reserves resources on a target machine prior to the occurrence of the actual migration. The 

system also prevents excessive centralisation through the implementation of a mechanism 

whereby when the workload processed on a particular machine exceeds a certain threshold, this 

machine will attempt to offload its agents to neighbour machines.  

• (Cao et al., 2005) describes a solution in which agents representing a local grid resource 

uses past application performance data and iterative heuristic algorithms to predict the 

application’s resource usage. In order to achieve a globally-balanced workload, agents cooperate 

with each other using a P2P service advertisement and discovery mechanism. Agents are 

organised into a hierarchy consisting of agents, coordinators and brokers, who are at the top of 

the entire agent hierarchy. The authors conclude that for local grid load balancing, the iterative 

meta-heuristic algorithm is more efficient than simple algorithms such as FCFS. 

• (Ilie and Bădică, 2013) details a solution based on the ant colony algorithm, a solution 

which takes its inspiration from the metaphor of real ants searching for food. ‘Ants’ are software 

objects that can move between nodes managed by agents. A move between nodes which is 

managed by the same agent is less costly. As ‘ants’ explore paths between nodes, they mark them 

with different pheromone strength. Whenever an ‘ant’ visits a node, the agent managing it saves 

the recorded tour, and updates its own database. Ants who subsequently visit this node read its 

current knowledge, meaning they have the potential to exchange information in this environment. 

• (Klusáček et al., 2013) – authors have implemented an extension to TORQUE scheduler 

which uses TS algorithm to optimise jobs queue. This routine is cyclically run for a limited period 

(10 seconds) and the queue is re-arranged based on the best solution found within this cycle. 

MASB implements similar approach when selecting a set of candidate services when a node is 

overloaded (see Section 6.1). 
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• (Eddy et al., 2015) presents a prototype in which agents operate electricity market. 

Agents exchange ‘offers’ and ‘bids’ for those offers via a custom-designed communication 

protocol based on TCP/IP. Among other specialised agents, system implements a short-lived 

coordinating agent to facilitate those exchanges and ensure the supply of electricity is managed. 

A comparable schema is implemented in MASB, in which the Broker Agent (BA) initially advises 

of candidate target nodes where an overloading service can be re-allocated. 

• (Lewis and Oppenheimer, 2017) – the scoring functions implemented in Kubernetes 

evaluate the balance of utilised resources (CPU and memory) on a scored node 

(BalancedResourceAllocation routine). Kubernetes scheduler tries to preserve proportional 

allocation of all resources – this approach has been further expanded into two types of scoring 

functions implemented in MASB (discussed in Section 5). 

3. MASB DESIGN PRINCIPLES 
Many other Cluster managing systems, such as Google’s Borg (Verma et al., 2015), Microsoft’s 

Apollo (Boutin et al., 2014) and Alibaba’s Fuxi (Zhang et al., 2014b), were built around the concept 

of the immovability and unstoppability of a task’s execution. This means that once a task is started 

it cannot be reallocated: it can only be stopped/killed and restarted on an alternative node. This 

design is particularly well suited for when there is a high task churn, as observed in Apollo or Fuxi 

where tasks are generally short-lived, meaning that the system’s scheduling decisions do not have 

a lasting impact. However, in order to support a mixed workload which features both short-lived 

tasks and long-running services, alternative solutions needed to be developed, such as the 

resource recycling routines present in Borg in which resources allocated to production tasks but 

not currently employed are used to run non-production applications (Verma et al., 2015). 

MASB takes advantage of virtualisation technology features, namely VM-LM, to dynamically 

reallocate overloading tasks. VM-LM allows programs which are running to be moved to an 

alternative machine without stopping their execution. As a result, a new type of scheduling 

strategy can be created which allows for the continuous re-balancing of the cluster’s load. This 

feature is especially useful for long-term services which initially might not be fitted to the most 

suitable node, or where their required resources or constraints change. Nevertheless, this design 

creates a very dynamic environment in which it is not sufficient to schedule a task only once. 

Instead, a running task has to be continuously monitored and reallocated if the task’s current 

node cannot support its execution any longer. As experiments in (Sliwko and Getov, 2016) with a 

centralised load balancer based on meta-heuristic algorithms demonstrated, a scheduling 

strategy implemented on a single machine is highly unlikely to efficiently manage a large number 

of tasks due to the high overheads of these algorithms. 

Therefore, MASB has been built around the concept of a decentralised load balancing 

architecture which could scale well beyond the limits of a centralised scheduler. This model is 

backed by P2P communication in which software agents negotiate the task allocations on behalf 

of their nodes. NAs actively monitor the used resources and are themselves responsible for 

keeping their nodes stable. When an NA detects that a node is overloaded, it will attempt to find 

an alternative node for overloading tasks with the help of an inter-node SAN protocol. The first 

step of SAN communication is to retrieve a set of suitable candidate nodes from a subnetwork of 

BAs which cache the state of the computing cell. However, because the information found in BAs 

is assumed to be outdated, more steps are required to successfully offload a task. 

The MASB project has been developed over several years, during which time it has undergone 

many changes in terms of both the technology used and the design of the architecture, such as 
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migration from Java to Scala, change from thread pools to an Akka Actors framework, 

introduction and use of the concurrency packages and non-locking object structures, etc. 

However, the main design principles have not been altered and are presented below: 

• To provide a stable and robust (i.e. no single point of failure) load balancer and scheduler 

for a Cloud-class system; 

• To efficiently reduce the cost of scaling a Cloud-class system so that it is able to perform 

in an acceptable manner on smaller clusters (where there are tens of nodes) as well on huge 

installations (where there are thousands of nodes); 

• To provide an easy way of tuning the behaviours of a load balancer where the 

distribution of tasks across system nodes can be controlled.  

The following challenges remained outside the scope of this research: 

• MASB does not address fault-tolerance issues in decentralised scheduling. In centralised 

architecture, fault-tolerance can be achieved through the implementation of a centralised 

database of tasks and their statuses. When task execution fails, the system just reschedules 

unsuccessful tasks to alternative nodes. This approach, however, will not work in a decentralised 

system since there is no central database of tasks. 

• The majority of centralised schedulers implement some kind of usage quota, e.g. per 

user, user group or other entity. Due to the decentralised nature of MASB, it is difficult to design 

a reliable usage monitoring and limiting system that is not reliant on central storage. 

The main technologies and specific features of MASB use are listed below: 

• VM-LM allows the transfer of a running application within the VM instance to an 

alternative node without stopping its execution. At present, the vendors’ strategy is to implement 

mixed production and low-priority jobs on a single machine. While production jobs are idler, low-

priority jobs consume the nodes’ resources. However, when production’s jobs resources need to 

be increased, the low-priority jobs are killed. Google Cluster (Verma et al., 2015) and Amazon EC2 

(Yi et al., 2012) use such an approach. MASB takes advantage of VM-LM to offload services 

without stopping their execution, collecting information about services in order to estimate the 

cost of VM-LM of such a service. 

• Decentralised agents network – software agents create a network of independent AI 

entities that can negotiate between each other and allocate Cloud workload between them. In 

MASB, each NA is responsible for its own node and manages its own workload. Because of the 

decentralised nature of MASB there is no complete up-to-date system state, meaning that each 

BA has data about a subset of nodes, and that it periodically exchanges these data with other BAs. 

The BA provides an interface whereby the NA can request a set of candidate nodes which a 

particular service or task can be migrated to. Once the NA receives a set of candidate alternative 

nodes for a particular service, it communicates with their NAs so as to migrate this service. 

• Meta-heuristic selection algorithms – while the majority processing of load balancing 

logic is done via negotiation between NAs, there are a few system processes that are better 

handled locally by the node itself. One such example is that when NA discovers its node is 

overloaded, it will select a subset of its services which it will attempt to migrate out. This selection 

is performed by Tabu-Search. For previous research on meta-heuristic algorithms that focus on 

scheduling, see (Sliwko and Getov, 2016). 

• Functional Programming language Scala and Akka Actors/Stream framework – due to 

the decentralised design and loose coupling between the system’s components, the 

implementation language is of secondary importance. However, load balancing algorithms 

require a significant amount of tuning, especially if the Cloud is designed to have a high utilisation 
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of available resources. This would mean that resource waste is low, and therefore the cost-per-

job execution is also low. Due to the complexity of inner-system relations and dependencies, a 

high-fidelity simulation environment is necessary to evaluate the expected performance of a 

given configuration and implemented changes before is deployed to a production system, e.g. 

the FauxMaster simulator used by Google Engineers (Verma et al., 2015). To develop such a highly 

concurrent program, an Akka actors’ framework has been used since it has a very low overhead 

per instance, roughly 300 bytes. Additionally, Scala allowed access to a wide range of mature Java 

libraries. 

4. MASB ARCHITECTURE 
MASB consists of four main components: 

• Networked servers/nodes and other hardware layer infrastructure; 

• Event objects that are passed around system components and which carry system 

information. Event objects are immutable and have a timestamp which ensures the information 

carried is never modified; 

• NA representing nodes and BA responsible for gathering system statistics data and 

providing a resource quoting mechanism; 

• Services or tasks – applications and batch jobs executed on Cloud nodes. 

4.1. EVENT TYPES 
In order to avoid costly broadcasts, since broadcast packages need to be rerouted through a 

whole network infrastructure consuming the available bandwidth, both NA and BA always 

communicate point-to-point. In the system there are several types of requests and responses 

between agents as shown in Table 1. 

4.2. NODE AGENT 
In decentralised load balancer design, NA represents every system node. NA the migration of 

services to an alternative node whenever the node's resources are over-utilised. In addition, NA 

is responsible for periodically reporting the node status and the state of resources to BAs. 

4.2.1. NODE RESOURCES MONITORING AND REPORTING 
NA continuously monitors the levels of defined resources and periodically reports the state of its 

node and levels of utilised resources to BA. Should any of the monitored resources be over-

allocated, NA will initialise a service allocation negotiation process. 

4.2.2. ACCEPT/DENY SERVICE MIGRATION REQUESTS 
NA also listens to service migration requests and accepts or denies them. This routine is simple, 

with NA projecting its resource availability with that service as follows: projected allocation of 

resources = current allocation of resources (existing services which also includes services being 

migrated out from this node) + all services being migrated to this node + requested service (from 

request). If the projected resources do not overflow the node, the service is accepted, and service 

migration is started. The source NA does not relinquish ownership of the migrated service until 

the service is successfully migrated to the target node. It should be noted that during service 

migration, its required resources are allocated twice, to both the source node and the target node. 

4.2.3. SERVICE MIGRATION 
After accepting the service migration request, NA immediately starts listening for incoming VM-

LM. In order to perform service migration, NA must have access to the administrative functions 

of VM and be able to initiate VM-LM to another node. This functionality can be either 
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implemented by the calls of the VM manager API or by executing the command line command. 

This process may vary considerably per VM vendor. 

Request Type Description 

GetCandidateNodesRequest 
Requests a number of candidate nodes for the 
migration of a specified services set. This request 
is sent from NA to BA. 

GetCandidateNodesResponse 
Reply with a set of candidate nodes for service 
migration, together with their resource statistics.  

TaskMigrationRequest 
Request from source NA to candidate NA as to 
whether service migration is accepted. 

TaskMigrationAcceptanceResponse 

Replay from target candidate NA that service 
migration will be accepted. 

Note: No resource allocation takes place after 
this request. 

TaskMigrationRejectionResponse 
Replay from target candidate NA that service 
migration will not be accepted. 

TaskMigrationProcessRequest 

Request to selected candidate NA to start service 
migration. 

Note: this request has an optional forced flag, 
requesting the target NA to skip the currently 
available resources check. The total node’s 
resources check and constraints check will be still 
performed. 

TaskMigrationProcessConfirmationResponse 

Confirmation from the target NA that the service 
migration process can start. 

Note: Resources are allocated for the migrated 
service and the live migration process starts. 

TaskMigrationProcessErrorResponse 

Denial of service migration process. This reply is 
generated if the NA configuration – he available 
resources or constraints – can no longer 
accommodate the migrated service. 

Table 1: Request types 

4.3. BROKER AGENT 
In this system, in addition to NAs, BA which is responsible for storing and maintaining information 

about nodes’ online status and their available resources, is also present. NA periodically reports 

to its BA about the state of its node and available resources. These data are then used to compute 

a list of suitable nodes. BA is a separate process which can coexist with NA on the same node 

since its operations are not computing-intensive. BA has two main purposes in the system which 

are outlined below. 

4.3.1. NODES RESOURCES UTILISATION DATABASE 
NAs periodically update BA with their currently available and total resource levels. BA stores all 

this data and can query them on demand. Every node entry is additionally stored with its 

timestamp, showing how long ago the data were updated. As additional protection against the 
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node silently going offline, e.g. through hardware malfunction or the network becoming 

unreachable, if this entry is not updated for three minutes, the node is assumed to be offline and 

entry is removed. This means that it will not be returned as the candidate node. 

4.3.2. COMPUTING SERVICE MIGRATION CANDIDATE NODES 
BA listens for GetCandidateNodesRequest and computes a list of candidate nodes for service 

migration. In order to create a list of candidate nodes, BA retrieves nodal data from the local 

cache and then scores them using Allocation Scoring Function. 

Candidate nodes are scored in a forecasting manner, i.e. as if a certain service was assigned to 

them. Examples include: 

• The service being migrated currently utilises 1 CPU code and 2 GB of memory; 

• The scored node total resources constitute 8 CPU cores and 16 GB of memory; 

• All other services on the scored node currently use 3 CPU cores and 5 GB of memory. 

When scoring this node, the score will be calculated from a forecasted resource usage of 3+1=4 

CPU cores and 5+2=7 GB of memory. This enables BA to score the future state of the system, as 

if service migration were being carried out. After scoring all the cached nodes, BA selects a 

configured number of candidate nodes with the highest score and sends them back to the asking 

node. In this research this number was set to fifteen candidate nodes, wherein a higher number 

failed to yield superior results. 

5. ALLOCATION SCORING FUNCTIONS 
Scoring functions are used when a new task is allocated or when a system needs to migrate a task 

to an alternative node. Scoring functions return a score value which evaluates how well a given 

task will fit a scored node system-wise. If a node cannot fulfil a task's constraints, the node is 

deemed non-suitable and the scoring function is undefined. 

Google's Borg implements a set of scoring routines (Verma et al., 2015). Unfortunately, being part 

of Google's proprietary code, the details are unavailable. In this implementation, the scoring 

function input is constructed from the total node resources, the currently available node 

resources and the currently required resources for a given task. It should be noted that scoring 

functions return a score when a task fits the available resources on a node, and also when a node 

is overloaded by a task. In addition, scoring functions should not be computation-expensive, 

especially when a new task is allocated. 

The node SAS function is a crucial part of the system that greatly impacts global resource usage 

level, that is, determining how well nodes' resources are utilised. This research concludes that 

node allocations are failing in six separate areas: 

• Idle Node – a completely idle node is a special case of allocation, in which no service has 

been allocated to this node. Such a node could be completely shut down, resulting in lower power 

usage for a cluster. In this research, idle nodes are scored most highly when determining a suitable 

node for initial service allocation. 

• Super-Tight Allocation (STA) – where some of node's resources are utilised in the 90%-

100% range. STA is regarded as stable allocation; however, due to the dynamic resource usage, 

this is actually not a desirable scenario. Complete, or almost complete, resource usage can 

frequently lead to resource over-allocation, whereby one or more services increase their resource 

utilisation. This experimentation has determined that leaving 10% of any given resource 

unutilised gives the best results since it reduces service migration (see discussion in Section 5.4). 
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• Tight Allocation (TA) – where all node resources are utilised in the 70-90% range. This is 

the most desirable outcome as it promotes the best fitting allocation of services and, therefore, 

low resource wastage. 

• Proportional Allocation (PA) – while tight-fit is the most desirable outcome, the majority 

of services in this research consumed a small amount of each resource. The majority of scheduled 

services are short batch jobs which have a very short execution time. In such a scenario, it is 

desirable to keep proportional resources' usage ratios on all nodes which would, therefore, 

generally enable nodes to fit more services with ease. 

• Disproportional Allocation (DA) – where the node's resources are not proportionally 

utilised, thereby making it difficult to allocate additional services if required. E.g. a setup where 

services on a node allocate 75% of CPU, but only 20% of memory, is not desirable. 

• Overloaded Node – when allocated resources overload the total available resources on 

the node. Naturally, this is an unwanted situation, and such a node is given a score of zero. 

 

Figure 1: Allocation Score types (two resources) 

Figure 1 illustrates all five areas for the two resources (CPU and memory). The scoring function 

should never allow overloading allocations to take place. Additionally, during research, it was 

determined that STAs are very prone to over-allocate nodes and are damaging to overall system 

stability. Therefore, they are also accorded a score of zero. DAs increase global resource wastage 

and should be avoided; nevertheless, they are acceptable if none of the other types of allocations 

are possible. 

5.1. SERVICE INITIAL ALLOCATION SCORE 
Tightly fitting services on as few nodes as possible are beneficial for global system performance. 

However, the initial allocation should rather aim to distribute services across nodes. During this 

research, two main reasons were identified: 
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• Initially, a Cloud user specifies the task’s required resources. User tend to overestimate 

the amount of resources required, wasting in some cases close to 98% of the requested resource 

(Moreno et al., 2013). Therefore, only after the task is executed could realistic resource utilisation 

values be expected. Allocating new services in a tight-fit way does result in turmoil when the 

service is actually executed, and the exact resource usages levels are logged. 

• MASB uses a network of BAs to provide a set of the best candidate nodes (nodes with 

the highest AS) – to allocate the service. However, the nodes’ statistics are not very accurate and 

are delayed. Big data systems often send multiples of an identical task in a batch. Those tasks 

execute the same program and have the same (or very similar) resource requirements. As such, 

a limited set of nodes will be highly scored. The result of repeatedly allocating multiple services 

to the same node over a very short period of time results in collisions. 

Therefore, when initially allocating existing services, candidate nodes should be scored in the 

following order: PA, TA and finally DA. Figure 2 is a graphical representation of such a scoring 

function. It should be noted that the maximum resource usage is 90%, and that values above this 

level are in an undesired STA’s area. 

 

Figure 2: Service Initial Allocation Score (two resources) 

Three separate areas can be noticed: 

• Lower-left (the highest score) – this promotes PA that will leave resource utilisation on 

a low level or proportionately used. 

• Upper-right corner (the medium score) – this promotes TA, where tasks on this node will 

closely utilise all of its resources. 

• The upper-left and lower-right corners (the lowest score) – these DAs will leave one 

resource utilised almost fully and the other resource wasted. 
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As an additional optimisation, only a limited number of candidate node recommendations are 

calculated, in this specific situation two hundred, before selecting the top recommendations. This 

is to prevent scoring routine calculations from processing for too long. The limit of two hundred 

applies only to non-forced recommendations for matching nodes. 

It should be noted that the SIAS is calculated exclusively from user-defined resource requirements 

since the actually-used resource requirements are unknown before the task execution actually 

starts. 

5.2. SERVICE REALLOCATION SCORE 
This research has found that the best results are achieved when tasks are packed tightly into 

available nodes, i.e. where global resource utilisation is the highest. Therefore, the best fit 

scenario, where the task fully utilises 90% of all available resources on a node, is scored the 

highest. In addition, all scoring functions should minimise situations when allocated tasks fully 

utilise only a few resources, as this prevents additional tasks from being added to a node, and 

adds to global resource waste. 

The most viable approach identified is to score the best fit scenarios the highest and then score 

allocations that will leave few resources unutilised, while simultaneously allocating other 

resources fully as the lowest. However, the majority of scoring queries fall between those two 

scenarios. In such cases, it was beneficial to promote balanced tasks allocations, that is, allocating 

tasks to nodes that will utilise available resources in the most proportional manner. 

Therefore, when migrating existing services, candidate nodes should be scored in the following 

order: TA, PA, then DA. Figure 3 is a graphical representation of this scoring function: 

 

Figure 3: Service Reallocation Score (two resources) 

Three separate areas can be noticed: 

• Upper-right corner (the highest score) – this promotes TA, where tasks on this node will 

closely utilise all of its resources. 
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• Lower-left (the medium score) – this promotes PA that will leave resource utilisation on 

a low level or proportionately used. 

• The upper-left and lower-right corners (the lowest score) – these DAs will leave one 

resource utilised almost fully and the other resource wasted. 

Similar to calculating recommendations for new tasks, as an additional optimisation, only a 

limited number of candidate node recommendations are calculated before selecting the top 

recommendations. However, because this routing is invoked much less frequently, two thousand 

nodes are analysed. The two thousand limit applies only to non-forced recommendations for 

matching nodes. It should be noted that the SRAS is calculated exclusively from actually-allocated 

resource requirements. User-defined resource requirements are evaluated as part of the 

Resource Usage Spikes routine, explained in detail below. 

5.3. SERVICE ALLOCATION LIFECYCLE 
As explained in the sections above, the ideal scenario for a service is to be initially allocated on a 

lowly-utilised node, before it is gradually migrated towards more tightly-fitted allocations with 

other tasks, i.e. in order to lower global resource waste.  

Originally, the MASB framework did not have distinct scoring functions for SIAS and SRAS; a single 

SAS function, with the same scoring model as SRAS, was used for all allocations. However, when 

scaling workload for simulations, it was discovered that user-defined resource requirements can 

differ significantly from actually-allocated resources, and that initially tightly fitting them onto the 

nodes is counter-productive. More nodes need to be scored which therefore consumes more CPU 

time when allocating a single task. It should further be noted that the majority of tasks are short 

lived and generally do not exist long enough in the system to be moved to an alternative node. 

Therefore, the design was altered to prioritise the allocation of new tasks to relatively unutilised 

nodes, and prioritise the reallocation of existing and currently running services to nodes where it 

will tightly fit with other programs running there. 

In a researched Cloud system, only about 20-40% of tasks qualify as long-running services, 

meaning that they run for longer than 12-20 minutes (Schwarzkopf et al., 2013). The remaining 

scheduled tasks consisted of short-term jobs which generally have much lower resource 

requirements than long-running services. The majority of tasks are short and will not exist for long 

at all in the system. Therefore, it is important for an initial allocation not to spend too much time 

in trying to tightly fit them into available nodes.  

While the majority of tasks are short, and are rarely migrated after the initial allocation, there 

exists a number of long-running services that have more demanding resource requirements, 

meaning that the majority of resources (55–80%) are allocated to service jobs (ibid.). Therefore, 

it is more difficult to fit them into nodes, and these allocations should be much tighter to minimise 

global system resource waste. Figure 4 represents the desired service allocation lifecycle. 

However, in order to allocate a service, an additional constraint has to be considered - Resource 

Usage Spikes which is outlined in section below. 

5.4. RESOURCE USAGE SPIKES 
At times, a task might instantly increase its resource usage; as such times, a node should have the 

capacity to immediately accommodate this request, without needing to migrate the task to an 

alternative node. In such a situation, other VMs running on this machine can be paused or killed 

to let the VM instance executing this task instantly allocate more resources. In this research, 

Resource Usage Spikes (RUS) were defined as being when there was a greater than 10% increase 

in the overall node resource utilisations levels in any of the monitored resources. A value of 10% 
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was selected because the previously described scoring functions aim to allocate node resources 

at 70-90% of total capacity, meaning that an increase of more than 10% could destabilise the 

node. 

 

Figure 4: Service Allocation Lifecycle 

As such, an additional feature was implemented in MASB to handle RUS instances. Aside from 

checking the actually-used resources for tasks and ensuring that the node has the capacity to 

support it, the system also calculates the maximum possible resource usage of all production 

tasks based on user-defined resource requirements as well as making sure that the node has the 

capacity to support all production tasks at their full resource utilisation. This constraint is limited 

only to production jobs since VMs running non-production jobs can be suspended without 

disturbing business operations. The continuously fulfilment of this constraint is referred to as goal 

(IV). 

The introduction of RUS constraint adds another dimension to the tasks allocations logic. Figure 

5 visualises how user-defined resource requirements for production tasks and actually-used 

resources for all tasks are integrated. In this sixty-node sample, approximately half the nodes have 

a very high CPU user-defined allocation for production tasks, while the real usage is much lower. 

It should be noted that while memory usage stays proportionally high thorough the GCD workload, 

the gaps between the requested and actually used memory are much smaller. This is a relatively 

common pattern for GCD workload. Additionally, the chart marks the allocation type (STA, TA, 

DA, PA) for each node in this sample on the horizontal axis. 
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Figure 5: Production vs. non-production allocated resources (60-nodes sample) 

Whilst RUS do not occur frequently, they do have the significant potential to destabilise an 

affected node. In examined GCD workload traces with ca.12.5k nodes and ca.140k tasks being 

continuously executed by them, RUS occurred with an estimated frequency of 212 per minute. 

Table 2 represents the average frequency of RUS with different resource increase thresholds, 

based on experiments. 

RUS threshold 
Average RUS 

(count per minute) 
Peak RUS 

(count per minute) 

5% 659 7538 

10% 212 4362 

15% 66 2390 

20% 47 1925 

25% 26 1135 

Table 2: Resource Usage Spike frequencies 

RUS are a significant design consideration. To cite an alternative solution to handle RUS, Google’s 

engineers implemented a custom resource reservation strategy using a variant of step moving 

average, as detailed by John Wilkes in a presentation during the GOTO 2016 conference in Berlin 

(Wilkes, 2016). 
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6. SERVICE ALLOCATION NEGOTIATION PROTOCOL 
When NA detects its node is overloaded, it will select a service (or a set of services) and attempt 

to migrate them to an alternative node or nodes. Since Service Allocation Negotiation (SAN) is an 

asynchronous process, this means a single NA can run several SANs in parallel. In the current 

implementation, NA selects a number of services in the first step (Select Candidate Node) and 

processes their allocation in parallel. However, for simplicity, the chart below presents the 

allocation negotiation of one service only. 

SAN is a five-stage process, involving a single source node (Node Agent S), one of the system BAs 

and several of other nodes in the system (Node Agent A, Node Agent B, Node Agent C) as shown 

in Figure 6. 

Figure 6: Service Allocation Negotiation 

When migrating-out a given service, NAS at first sends a GetCandidateNodesRequest to BA to get 

with a set of candidate nodes where the task cab potentially be migrated to. BA scores all of its 

cached nodes and sends back the top fifteen to NAS. Additionally, in order to help to avoid 

collisions, BA does not directly select only top candidate nodes, but instead selects them 

randomly from a node pool, where candidate node score is a weight, wherein higher scored nodes 

are selected more frequently. This design helps to avoid a situation where an identical subset of 

candidate nodes is repeatedly selected for a number of tasks with the same resource 

requirements. 
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Upon receiving this list, NA sends service migration requests to all of those candidate nodes, and 

waits for a given time (in this case for 20 seconds) for all replies. After this time, NA evaluates all 

accepted service migration responses and orders them in relevance order (nodes with the highest 

score first) and then attempts to migrate a service to a top candidate node. If candidate node 

returns an error, the source NA will pick the next candidate node and attempt to migrate a service 

there. 

At each of those stages, the candidate NA might reject task migration or return an error, e.g. when 

task migration is no longer possible because the current node’s resource utilisation levels have 

increased or because the node attributes no longer match the service’s constraints. Depending 

on a system utilisation level, such collisions might be more or less frequent. However, they are 

resolved at node-to-node communication level and do not impact the system performance as a 

whole.  

In a situation where there are insufficient candidate nodes available due to the lack of free 

resource levels, the BA will return candidate nodes with the ‘forced migration’ flag set to true. 

The forced migrations feature is detailed in Section 6.6 below. 

6.1. STEP 1: SELECT CANDIDATE SERVICES 
Select Candidate Services (SCS) routine is executed when the NA detects that the currently 

existing services are overloading its node. This step is processed on the node wholly locally. The 

purpose of this routine is to select the service (or set of services) that the N will attempt to migrate 

out and become stable (i.e. non-overloaded) during that process. All services currently running 

on this node are evaluated, taking into consideration various aspects, namely: 

• The cost of running a service on this particular node. NA will aim to have the highest 

node score for its own node. If removing this particular service will cause its score 

(calculated by Score Node Utilisation Function) to be higher, then this service is more 

likely to be selected. 

• The cost of migration of a service – Virtual Machine migrations cause disruptions on the 

Cloud system. In this research, cost is measured as the additional network traffic 

required to migrate the running VM instance to an alternative node. This cost has been 

experimentally estimated to be generally exponentially correlated to allocated memory 

for a given service (Sliwko and Getov, 2017). It should be also noted that different types 

of applications have a more-or-less step increase in total network traffic required to 

migrate VM. 

• The likeness to find an alternative node - the majority of services do not have major 

constraints and can be executed on a wide range of nodes. However, there are a small 

number of services with very restrictive constraints that significantly limit the number of 

nodes that the service can be executed on. If such a service can only be executed locally 

(i.e. the node has enough total resources capacity and service constraints are matched), 

then NA will never migrate out those services. 

• Any service which cannot be executed on a local node is compulsory selected as a 

candidate service. This scenario could occur if the service constraints or node attributes 

were updated. 

NA first computes a list of compulsory candidate services, i.e. services that can no longer be 

executed on this node. Following this, if the remaining services are still overloading the node, it 

will select a subset of services to be migrated out. 
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The candidate services selection algorithm tries to minimise the total migration cost of selected 

services, and also to achieve the highest AS for a node, under the assumption that the selected 

subset of candidate services is successfully migrated to the alternative node. In order to achieve 

this, the algorithm defines the Fitness Function as coded inside SCS: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
𝑁𝑜𝑑𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡
 (1) 

For the above in a NP-Hard problem with a substantial search space, e.g. 20 services on a node, 

the search space size is over one million combinations. Therefore, the use of meta-heuristic 

algorithms is justified. In previous research (Sliwko and Getov, 2016), a variant of TS with a limited 

number of steps and repeated runs, has been successfully applied to solve a similar class of 

problems. It was possible to copy this previous implementation with only a small alteration. The 

TS algorithm has the following properties: 

• It has a small memory imprint since only the list of visited solutions is maintained 

thorough execution; 

• It can be easily parallelised as a variant which is restarted multiple times; 

• It is very controllable through setting up a limited number of steps and number of runs; 

• It is stoppable, and the best found result can be retrieved immediately; 

• It generally returns good results. 

 

20:39:13.342 NodeAgentActor (node=5782509) INFO  

SAMPLE: 

 Selected overloading tasks for node [5782509] 

 Node total resources = [0.5000000000,0.2493000000] 

 Node used resources (all tasks) = [0.1686352000,0.1673750000] 

 Node used prod resources (all tasks) = [0.5837480000,0.3572020000] 

 All tasks (* Selected): 

  Task [6250257820-2156] Priority=2  Required resources=[0.0625000000,0.1592000000] Used 

resources=[0.0062500000,0.0159200000] Migration cost = 2708.33 [MB] 

  Task [2902878580-2584] (PROD) Priority=11  Required resources=[0.0062480000,0.0014570000] Used 

resources=[0.0093380000,0.0269500000] Migration cost = 541.55 [MB] 

  Task [331416465-22] (PROD) Priority=9  Required resources=[0.1875000000,0.0894800000] Used 

resources=[0.0550500000,0.0206900000] Migration cost = 438.98 [MB] 

  Task [4857080139-282] (PROD) Priority=2  Required resources=[0.0625000000,0.0477300000] Used 

resources=[0.0002184000,0.0310400000] Migration cost = 608.56 [MB] 

 *Task [4857081234-132] (PROD) Priority=2  Required resources=[0.0625000000,0.0477300000] Used 

resources=[0.0002184000,0.0135700000] Migration cost = 322.33 [MB] 

 *Task [4857082814-371] (PROD) Priority=2  Required resources=[0.0625000000,0.0477300000] Used 

resources=[0.0002174000,0.0135700000] Migration cost = 322.33 [MB] 

  Task [5351216030-28] Priority=1  Required resources=[0.0312500000,0.0159000000] Used 

resources=[0.0005217000,0.0019320000] Migration cost = 131.65 [MB] 

  Task [5852047245-0] (PROD) Priority=9  Required resources=[0.0343600000,0.0104200000] Used 

resources=[0.0025140000,0.0019300000] Migration cost = 131.62 [MB] 

  Task [6114773114-1295] Priority=0  Required resources=[0.0125000000,0.0077670000] Used 

resources=[0.0002022000,0.0019190000] Migration cost = 131.44 [MB] 

  Task [6217659576-9] (PROD) Priority=0  Required resources=[0.0125000000,0.0039750000] Used 

resources=[0.0201100000,0.0057370000] Migration cost = 194.00 [MB] 

  Task [6221861800-10453] Priority=0  Required resources=[0.0125000000,0.0159000000] Used 

resources=[0.0002031000,0.0019280000] Migration cost = 131.59 [MB] 

  Task [6221861800-3053] Priority=0  Required resources=[0.0125000000,0.0159000000] Used 

resources=[0.0002069000,0.0019300000] Migration cost = 131.62 [MB] 

  Task [6221861800-4253] Priority=0  Required resources=[0.1562000000,0.1399000000] Used 

resources=[0.0002041000,0.0019300000] Migration cost = 131.62 [MB] 

  Task [6221861800-9435] Priority=0  Required resources=[0.0125000000,0.0159000000] Used 

resources=[0.0002031000,0.0019320000] Migration cost = 131.65 [MB] 

 *Task [6225099547-1718] (PROD) Priority=2  Required resources=[0.0306400000,0.0131700000] Used 

resources=[0.0002079000,0.0038800000] Migration cost = 163.57 [MB] 

  Task [6238340468-1853] (PROD) Priority=0  Required resources=[0.0625000000,0.0396100000] Used 

resources=[0.0175800000,0.0116000000] Migration cost = 290.05 [MB] 

  Task [6238842108-115] (PROD) Priority=9  Required resources=[0.0312500000,0.0279500000] Used 

resources=[0.0319800000,0.0057370000] Migration cost = 194.00 [MB] 

  Task [6238844615-173] (PROD) Priority=9  Required resources=[0.0312500000,0.0279500000] Used 

resources=[0.0234100000,0.0051800000] Migration cost = 184.87 [MB] 

 Node used resources (remaining tasks) = [0.1679915000,0.1363550000] 

 Node used prod resources (remaining tasks) = [0.4281080000,0.2485720000] 

 Total migration cost (selected tasks) = 808.2316800065191 [MB] 

  

 

Slightly better results can be achieved with SGA-TS, albeit at the cost of higher memory imprint, 

more complex implementation and decreased controllability. It was found that multiple restarts 
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(herein a twenty-five-rerun limit) with a shallow limit of steps (herein five) yields very good results, 

with only about 2-7% of solutions in the whole search space being examined in each invocation. 

Additionally, instead of restarting the algorithm an arbitrary number of times, a stop condition 

for this algorithm has been implemented when the best-found solution has not been improved 

in a certain number of the last steps (herein six). A sample log entry is shown above, wherein the 

subset of candidate services is being computed. 

The selected services are then added to any compulsory candidate services, and NA will attempt 

to migrate out this set in the next step. The potential reduction of used resources is an effect of 

removing a subset of tasks (marked with *) from this node. It can also be seen that CPU reserved 

for production tasks is potentially reduced from 0.583748 to 0.428108 which is ca.86% utilisation 

of total 0.5 CPU available on this node, and memory reserved for production tasks is potentially 

reduced from 0.357202 to 0.248572 which is ca.99% utilisation of total 0.2493 memory available 

on this node. The total migration cost for this set of migrations is ca.808 MB. 

6.2. STEP 2: SELECT CANDIDATE NODES 
 

 

21:29:25.454 NodeAgentActor (node=351622677) INFO   

SAMPLE: 

 Candidate nodes recommendations for migration-out of task: Task [4765556460-299] Required 

resources=[0.0558500000,0.1545000000] Migration cost = 2631.33 [MB] 

 Source node: Node [351622677] [0.5000000000,0.4995000000]: 

  CandidateNodeRecommendation[time=1489526965342,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=1436310537,nodeAvailableResources=[0.1143434

000,0.1666880000],fitnessValue=3.9457163172031864,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965342,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=1301878,nodeAvailableResources=[0.0705801800

,0.2096340000],fitnessValue=3.9058075263646206,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965341,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=1429191803,nodeAvailableResources=[0.1065830

000,0.2709750000],fitnessValue=2.8282483001788625,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965341,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=372626592,nodeAvailableResources=[0.19000626

00,0.1980110000],fitnessValue=2.7914548077392425,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965310,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=5655258253,nodeAvailableResources=[0.1694482

000,0.2432700000],fitnessValue=2.583337693875162,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965311,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=4027200724,nodeAvailableResources=[0.2221300

000,0.2365560000],fitnessValue=2.236828139428944,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965308,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=610755652,nodeAvailableResources=[0.30181782

40,0.1708320000],fitnessValue=2.039819689997894,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965342,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=6565530,nodeAvailableResources=[0.2909429000

,0.2023160000],fitnessValue=1.9539382168986787,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965309,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=4478563006,nodeAvailableResources=[0.2623356

000,0.2849700000],fitnessValue=1.7019616825022668,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965307,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=938210976,nodeAvailableResources=[0.16753535

00,0.3809450000],fitnessValue=1.6134377154605029,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965340,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=8055084,nodeAvailableResources=[0.3391320000

,0.2168510000],fitnessValue=1.5794143938664662,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965343,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=351638108,nodeAvailableResources=[0.34576310

00,0.2926680000],fitnessValue=1.2671427736705632,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965308,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=778700448,nodeAvailableResources=[0.33851370

00,0.3026960000],fitnessValue=1.2639028696871983,forceMigration=false] 

  CandidateNodeRecommendation[time=1489526965309,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=906517,nodeAvailableResources=[0.3179763100,

0.3554060000],fitnessValue=1.1607777796685308,forceMigration=true] 

  CandidateNodeRecommendation[time=1489526965342,taskId=4765556460-

299,taskRequiredResources=[0.0558500000,0.1545000000],nodeId=2097421225,nodeAvailableResources=[0.3466404

000,0.3375800000],fitnessValue=1.117142943496929,forceMigration=true] 

 

 

After selecting candidate nodes, NA sends a GetCandidateNodes request to BA. A part of this 

request, service information data, such as currently used resources and constraints, are sent. BA 

also itself caches a list of all nodes in system with their available resources and attributes. Based 

on this information, BA prepares a list of alternative candidate nodes for a service in request. The 

main objective of this process is to find alternative nodes which have the potentially highest node 
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AS, under the assumption that the service will be migrated to a scored node. The size of this list 

is limited to an arbitrary value to avoid network congestion when NA will send actual migration 

requests query in the next step. In this experiment, it is set to fifteen candidate nodes returned 

in each response. 

This step is the most computing intensive of all steps and is a potential bottleneck for negotiating 

logic processing. BA needs to examine all system nodes, check their availability for a given service 

and score them accordingly. The request processing is self-contained and highly concurrent, 

meaning that the node scoring can be run in parallel and the final selection of top candidate nodes 

is run in sequence. Originally, this code was extensively optimised, and designed BA to be able to 

run in a multi-instance mode if needed and to handle heavy usage. However, in experiments, the 

quoting mechanism proved to be very lightweight and demand not that high, meaning that a 

single BA was sufficient to handle 12.5k nodes in the system. A sample log when such a list is 

computed and returned to a NA is shown above. 

Here, BA returned top candidate nodes for a given service ordered by their suitability score, i.e. 

fitness value. It should be noted that within the node recommendation there is additional 

information, such as node available resources and calculated fitness value. It is not necessary to 

return this extra information, but it was found to be very useful for logging and sampling purposes. 

6.3. STEP 3: SEND MIGRATION REQUESTS 
Upon receiving the candidate nodes list, NA will send TaskMigration request to each of the 

returned nodes with the exception of forced migration candidates. Forced migration candidates 

will be always added to list of accepted candidate nodes in the next step. Each NA analyses its 

own node availability for a given service, i.e. both the available resources and the node’s 

attributes, and then responds with TaskMigrationAcceptanceResponse or 

TaskMigrationRejectionResponse. It should be noted that acceptance only implies the readiness 

of accepting a service, and NA is not allocating any resources yet. Acceptance response contains 

this node’s current resources usage levels which are used in the next step to rescore this node, 

since the data from BA are less recent.  

6.4. STEP 4: SELECT CANDIDATE NODE 
NA waits for defined time, or until all candidate nodes have responded by either the acceptance 

or rejection of a migrated service and computes a list of candidate nodes that accepted this 

service. NA evaluates each of the accepting candidate nodes using the allocation scoring function, 

with the assumption that the service will be reallocated to a scored node. From this pool, a single 

candidate node is then randomly selected. The selection is weighted with candidate node scores 

which helps to avoid conflicts when many service migrations compete for the same node. It 

should also be noted that forced migration candidate nodes are added to this list, but will be 

selected only in the last place, after all other alternative migrations attempts fail. A sample log 

entry is presented below. 

When a single candidate node is selected, NA sends TaskMigrationProcessRequest to initiate a 

service migration process itself. NA stores received candidate node recommendations in its 

memory, in case the service migration fails and the next candidate node has to be selected. Once 

the service is removed from a node, meaning it is reallocated, has finished its execution, is killed 

or crashes, all its candidate node recommendations are deleted. Additionally, candidate node 

recommendations expire after an arbitrary defined time, in this case four minutes. This 

mechanism exists in order to remove recommendations with out-dated node data. 
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20:40:05.002 NodeAgentActor (node=2X318388085) INFO   

SAMPLE: 

 Accepted recommendations for migration-out of task: Task [2X5544436183-107] (PROD) Priority=9  Required 

 resources=[0.0156200000,0.0590200000] Used resources=[0.0015620000,0.0059020000] Migration cost = 1066.98 

[MB] 

 Source node: Node [2X318388085] [0.5000000000,0.2493000000] 

 All non-expired recommendations (* selected): 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=2X1342749,nodeAvailableResources=[0.1891418000,0.1775330000], 

  fitnessValue=2.466743799605,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=7X3820867554,nodeAvailableResources=[0.3076184300,0.1759794000], 

  fitnessValue=1.643246105180,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=2X1672921,nodeAvailableResources=[0.3748082000,0.1112931000], 

  fitnessValue=1.474454140561,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=705685,nodeAvailableResources=[0.4126200000,0.1051633000], 

  fitnessValue=1.261414394584,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=5X3625124643,nodeAvailableResources=[0.4090680000,0.1390167000], 

  fitnessValue=1.192644653836,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404982,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=3X1436307767,nodeAvailableResources=[0.3632657800,0.2724450000], 

  fitnessValue=1.035791353731,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404982,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=6X347828744,nodeAvailableResources=[0.4451295000,0.1572113000], 

  fitnessValue=0.973313266907,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=1X1340913,nodeAvailableResources=[0.3966700000,0.2720053000], 

  fitnessValue=0.918316167972,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=4X1094553,nodeAvailableResources=[0.4399146100,0.2276939000], 

  fitnessValue=0.857971414808,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404982,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=5X602982,nodeAvailableResources=[0.4396702700,0.2803267000], 

  fitnessValue=0.761758672976,forceMigration=false] 

 *CandidateNodeRecommendation[age=1,time=1501616404982,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=907792,nodeAvailableResources=[0.4224480000,0.3210886000], 

  fitnessValue=0.736151076814,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404982,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=5X766891169,nodeAvailableResources=[0.4173642000,0.3477250000], 

  fitnessValue=0.698808489913,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616404981,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=6X1274843,nodeAvailableResources=[0.4393896000,0.3416696000], 

  fitnessValue=0.656398863515,forceMigration=false] 

  CandidateNodeRecommendation[age=1,time=1501616359408,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=6X2850436,nodeAvailableResources=[0.3813088100,0.0624228000], 

  fitnessValue=1.596120533603,forceMigration=true] 

  CandidateNodeRecommendation[age=1,time=1501616359409,taskId=2X5544436183-107,taskUsedResources= 

  [0.0015620000,0.0059020000],nodeId=1X288943706,nodeAvailableResources=[0.4105824800,0.1324943000], 

  fitnessValue=1.201407811061,forceMigration=true] 

 

 

6.5. STEP 5: MIGRATION PROCESS 
When NA receives TaskMigrationProcessRequest, it performs a final suitability check, wherein 

both node’s available resources and service constraints are validated. If the forced-migration flag 

is set, NA ignores the existing tasks and validates the required resources against total node 

resources. Occasionally, the target NA can reject service migration process or migration fails. In 

such a scenario the algorithm returns to Step 2 and selects an alternative candidate node. In 

practice, this happens for 6-8% of all service migration attempts, the majority being the result of 

service migration collisions where two services are being migrated to the same node. There have 

been no observations of an increase in collisions when the larger Cloud system is simulated. 

6.6. FORCED MIGRATION 
In rare circumstances, approximately 10-15 tasks out of 12.5k tasks, arise constraints which 

restrict the execution of a task to a very limited number of nodes. Since Google Cluster Project 

data have been obfuscated, the exact details of those constraints are unavailable. As such, there 

is a scenario in which NA wants to migrate out a given task but is unable to find an alternative 

node because any suitable nodes have already been allocated with other tasks and had the 

majority of their resources utilised. In such a scenario, BA returns candidate node 

recommendations with a forced-migration flag set. In its response, the BA can also mix non-forced 

migrations and forced migrations. In a worst case scenario, all returned recommendations would 

be forced, but this approach ensures there is always an acceptable node to run a given task on. 

This prevents a starvation of the task resources, where the task is never executed. 
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A forced migration flag signals that a node is capable of executing service but that its current 

utilisation levels do not allow it to allocate additional services as this will cause the node to be 

overloaded. Forced migration forces the node to accept the service migration request while 

skipping the available resources check; however, service constraints are still validated (including 

the check if node’s total resources are sufficient to run the service). This design helps to avoid a 

situation where a service has very limiting constraints and only a few nodes in the system can 

execute it. If those nodes have no available resources then it will not be possible to allocate a 

service to them, and therefore services will not run. As such, the nodes are forced to accept this 

service which then triggers NA’s AI to migrate out some of its existing tasks to alternative nodes. 

7. EXPERIMENTAL RESULTS 
The previously developed AGOCS framework is used as the base of the experimental simulation. 

AGOCS simulates workload from a project using month-long workload traces. AGOCS is a very 

detailed simulator which provides a multiple of parameters and logical constraints for simulated 

jobs. The scope of the available variables is very broad, including memory page cache hit and 

instructions per CPU cycle, but in this project the focus and simulation were based on the 

following: 

• Requested (by user) and realistic (monitored) resources’ utilisation levels for memory 

and CPU; 

• Detailed timing of incoming tasks and any changes in available nodes; 

• Nodes attributes and attributes’ constraints defined for tasks. 

This level of detail comes at the price of extensive computing power requirements. While dry 

simulation itself can run on a typical desktop machine in ca.9 hours, adding layers of scheduling 

logic, agents’ states and inter-system communication requires a significant increase in processing 

time. In order to realistically and correctly simulate scheduling processes on a Cloud system, the 

Westminster University HPC Cluster was used. 

7.1. TESTING ENVIRONMENT 
The MASB prototype was initially developed on a personal desktop, but as the size and level of 

detail of the simulations grew, it was necessary to move to a Westminster University HPC Cluster 

environment where more computing power was available. All the experiments were executed on 

the Westminster University HPC Cluster.  

While this cluster offered a sizable array of GPUs, the simulations did not take advantage of that 

computing power, and instead all processing took place on CPUs. Although it would have been 

possible to achieve higher throughput when using GPU with frameworks such as ScalaCL or 

Rootbeer, JVM does not natively support GPU processing. This meant that it was preferred to 

have as few external dependencies as possible, since they make maintaining the project more 

time-consuming. Interestingly, Google’s BorgMaster process which manages a single cell in the 

production environment for one computing cell, uses 10–14 CPU cores and up to 50GB of memory. 

The statistics presented are valid for an intensely utilised computing cell, for example one which 

completes more than 10k tasks per minute on average (Verma et al., 2015). 
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Figure 7: YourKit Java Profiler exercise 

In experiments, MASB allocated all available 40 CPU cores (20 cores + HT siblings) and used them 

continuously 60% to 80%. The MASB process allocated ca.7GB of memory. It is difficult to measure 

exactly how much computing power was spent on supporting activities such as simulating 

messaging interactions between agents, i.e. enqueuing and dequeuing messages to and from 

Akka actors. However, after tuning exercises of the default configuration, the Akka Actors 

framework proved to be quite resilient. It is estimated that the framework’s processing did not 

take up more than 10-15% of the total CPU time, with the relatively lightweight AGOCS simulator 

framework consuming about 15-25% of all CPU time. All the profiling and the above estimation 

were completed with help of YourKit Java Profiler 12.0.2 tool. Figure 7 presents a sample 

screenshot from the code profiling exercises. 

 

Figure 8: Monitoring context switches via pidstat 

YourKit Java Profiler was an excellent tool which helped to optimise the code execution time. 

However, in a truly multi-core environment, a different approach was required which was focused 

on minimising context switches frequency and average CPU idle time across all available cores. 

Once the MASB framework was moved into the Cluster environment, the ‘pidstat’ command tool 
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was used to gather statistics and then refactor and fine-tune framework to achieve better 

parallelism. Figure 8 presents a sample from ‘pidstat’ output. 

7.2. TESTABILITY 
Building a framework which fully simulates the Google computing cell from GCD traces has been 

previously recognised as a challenging task, where there are many aspects to consider (Sharma 

et al., 2011; Abdul-Rahman, et al., 2014; Zhu et al., 2015). GCD traces contain details of nodes, 

including their resources, attributes and historical changes in their values. Traces also contain 

corresponding parameters for tasks, such as user-defined and actually-used resources, and 

attributes’ constraints. This has created a multi-dimensional domain with a range of relations 

which has resulted in complex error-prone implementation. In order to mitigate the risk of coding 

errors, especially during rapid iterations, a number of programming practices were used: 

• A comprehensive test units suite was developed, along with prototype code. Test units 

were executed upon every build to catch errors before being deployed to production; 

• A number of sanity checks were built into the runtime logic, such as checking whether 

the task’s constraints could be matched to any node’s attributes within the system and checking 

whether the total of all scheduled tasks’ resources exceeded the computing cell compatibilities; 

• Recoverable logic flow was implemented for both NA and BA. In the case of various 

errors such as division by zero or null pointer exceptions, the error is logged but the agent 

continues to run. This feature was based on the supervisor strategy of the Akka actors framework; 

• Keeping a separate error log file with the output of all warnings and errors was a 

considerable help in terms of resolving bugs. 

The implementation of the above features gave high confidence in terms of realising a good 

quality and reasonably bug-free code. Additionally, the very comparable throughput to original 

GCD traces confirmed the correctness of implementation. 

7.3. PLATFORM OUTPUTS 
Adding detailed logging features to MASB has proved to be surprisingly difficult. Due to the highly 

parallel nature of the simulated Cloud environment, an enormous number of log messages were 

generated upon each simulation, making it difficult to analyse the behaviour of tested algorithms. 

In addition, writing and flushing log streams caused pauses in simulation. Switching to a Logback 

framework which was designed with a focus on concurrent writes, solved this problem, although 

it was necessary to split the data into separate log files in order to improve readability. 

7.3.1. LOGGING 

In order to fine-tune MASB, excessive logging routines were implemented. In the final version, all 

messages, counters and errors are logged to four types of log-files. These are presented in Figure 

9. 

• /logs/*.log files (top-left corner) – standard log outputs containing all logs messages and 

also samples; 

• /logs/*-error.log (top-right corner) – errors and corrupted data exceptions are written 

to separate files to help with debugging and tuning; 

• /logs/*-ticks.csv (low-left corner) – CSV files with periodically generated overall system 

stats, such as the number of idle and overloaded nodes, number of migration attempts, number 

of forced migration attempts, global resources-allocation ratio, and so on; 

• /usage/*.csv (low-right corner) - detailed node usage stats and task allocations are 

written periodically to a file, that is, every 100 minutes of simulation time. 
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Figure 9: Logs and output files structure 

 

7.3.2. SAMPLING 
Sampling proved to be one of the most important logging features implemented. While examining 

every decision process in MASB simulation is virtually impossible, frequent and recurrent analysis 

of the details and values was useful for fine-tuning the system and the scoring functions. Not all 

the details of every single decision process were logged, only a small percentage of all invocations. 

In the current implementation, the following items are sampled: 

• The selection of overloading tasks by the NA, ca.1 sample per 50 invocations; 

• The scoring and selection of candidate nodes by the BA, ca.1 sample per 5000 

invocations; 

• The selection of the target node from the candidate node list, ca.1 sample per 5000 

invocations. 

7.4. SIMULATION RUNS 

During the later stages of the development of the MASB prototype, several simulations were 

continuously run. They were frequently paused, tuned and then resumed to see whether a given 

tweak would improve the results. This methodology allowed to progress the research at a good 

speed while simultaneously iterating a number of ideas and tweaks. Therefore, the performance 

testing did not have noticeable stages, but instead the stages blended into each other. This said, 

it is possible to logically split the performance testing into four main areas: 

• Benchmarking – GCD workload traces also contain actual Google scheduler task 

allocations. In the first simulation, MASB will replay recorded events, mirroring tasks allocations 

as per the Google scheduler. This simulation was used as a controlling run in order to test the 

system, and also as a benchmark to compare results with the original allocations.  

• Performance testing – secondly, MASB was tested to identify whether it was capable of 

allocating the same workload as Google’s BorgMaster system. The size of the workload was then 

increased gradually in 2% steps while preserving the configuration of the system nodes. The 

results were then compared to the original GCD workload. 
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• Migration Cost – thirdly, a collection of different scoring functions and their variants 

were tried in order to research their impact on total migration cost while allocating the given 

workload. 

• Scalability – finally, the MASB simulation was run with multiplies of a base workload in 

order to test the scalability limits of the designed solution. Although this step was the least work-

intensive, it took the longest time to perform. 

As noted in (Zhu et al., 2015), simulating GCD workload is not a trivial task. The main challenge 

when running such large and complex simulations is the demand for computation power and the 

continuous processing. During this experiment, the AGOCS framework was modified to also allow 

the testing of computing cells larger than 12.5k. This was achieved by duplicating randomly 

selected existing tasks and their events, for example ‘Create Task A event from GCD workload 

trace files’ will create events AddTaskWorkloadEvent events for task A and A’. This feature is 

based on the hashcode of object’s id which is a constant value. 

The largest experiments simulated a single Cloud computing cell with 100k nodes and required 

nine months of uninterrupted processing on one of the University of Westminster HPC cluster’s 

nodes. At this juncture, it should be noted that early simulations often fail due to unforeseen 

circumstances, such as NAS detachment or network failure. One solution to this is to frequently 

save snapshots of the state of the simulation and to keep a number of previous snapshots in case 

of write file failure. At the peak of experiments, eighteen out of twenty computing nodes were 

committed to running MASB simulations, as seen in Figure 10. 

 

Figure 10: University of Westminster HPC Cluster utilisation 

7.5. ALLOCATION SCORE RATIOS 

Clearly, when examining the suitability of load balancing, the key parameter is the number of 

overloaded nodes, which should be kept to minimum. It was found that replaying GCD traces 

using the Google’s original Borg’s allocation decisions results in up to 0.5% nodes being 

overloaded in a simulated one-minute period. It was assumed that this phenomenon was the 

result of delayed and compacted resource usage statistics which were recorded and averaged 
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over ten-minute periods. Therefore, in further experiments this ratio was used as an acceptable 

error margin. 

The second researched property was how nodes were distributed amongst allocation score types 

during simulations. Therefore, each experiment recorded a number of nodes with each allocation 

score type, and averaged them out over the simulation period. The set of normalised values for 

STA, TA, PA and DA are referred to as Allocation Score Ratios (ASR). Idle Nodes and Overloaded 

Nodes are discussed separately, and they are excluded from the ASR. The ASR values describe 

how well the Cluster is balanced, that is, how well nodes are balanced as a whole group. The ASR 

values are used to describe the experimental results presented in the subsections below to 

highlight the differences in how various scheduling strategies perform under a GCD workload. 

Figure 11 chart visualises the AS distribution during a month-long simulation. The most dominant 

AS was PA, meaning that each of the node’s resources is utilised between 0% and 70%. Ca.68% of 

all the cluster’s nodes are found within these parameters, which is direct result of their initial 

allocation using SIAS function. The second biggest group, ca.22% of all servers, are nodes 

allocated disproportionally in which one or more resources are highly used but the other 

resources are relatively idle. The remainder of the nodes have either an STA or TA allocation score 

type. The PA to DA ratio of roughly 3:1 is characteristic for a typical workload as recorded in GCD 

traces and processed by MASB. 

 

Figure 11: MASB – Allocation Scores distribution (12.5k nodes) 

The chart also highlights two periods of low and elevated workload, marked A and B respectively: 

• During the low workload period (A), SIAS function can schedule the majority of newly-

arriving tasks to relatively unused nodes, thereby successfully preserving their resource usage 

proportions. As such, the number of PAs increases while the number of DAs decreases. Existing 

long-running services continue to run uninterrupted on their nodes, and so the ratio of STA to TA 

remains flat. 

• During elevated workload period (B), SIAS function is unable to find relatively unused 

nodes anymore. It thus selects lower quality allocations, resulting in a decrease in PAs. Due to the 
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scarcity of resources, services are also reallocated more frequently by SRAS function. This results 

in tighter fit allocations, which is seen as an increase in STAs and TAs counts. 

This cycle is repeated thorough cluster activity, wherein MASB balances the workload. The 

sections which follow describe a number of implemented optimisations and their rationales, as 

well as the experimental results and a commentary on them.  

7.6. BENCHMARK 

Given that GCD traces, have a complicated structure and contain a vast amount of data, only 

rarely are they analysed to the full extent of their complexity. MASB design shares similarities 

with BorgMaster in areas such as constraining tasks, defining memory and CPU cores as resources, 

using scoring functions for candidate node selection, and handling RUS instances. It also closely 

follows the lifecycle of tasks as presented in (Sliwko and Getov, 2016). As things stand, there is no 

publicly available literature which contains descriptions of similar experiments which could be 

compared with the simulation results of MASB. Therefore, the closest comparable results are the 

original Borg’s allocation decisions that were recorded in GCD traces. For the purposes of this 

research, it was decided that they be used as a benchmark for the results from MASB’s 

experiments. 

Both simulations processed full month-long GCD traces. The average values were used because 

MASB simulation works in one-minute intervals whilst GCD traces provide usage statistics in ten-

minute windows that occasionally overlap. Given this, peak or median values were not accurate. 

To highlight differences in workings between the MASB and Google Borg algorithms, Figure 12 

presents the AS distribution during the period recorded in GCD. 

 

Figure 12: Borg – Allocation Scores distribution (12.5k nodes) 

In comparison to experimental data presented in Figure 12, MASB behaves more organically 

during periods of low and elevated workload. This is especially visible during the period of 

elevated workload (B) where MASB managed to preserve a better ratio of PA to DA Nodes than 

Google’s Borg. This conduct is the result of allowing a given task to be reallocated during its 

execution, meaning that MASB can dynamically shape its workload and improve the health of its 

allocations. This feature also allows greater flexibility in altering the requirements of running 

services, in which the load balancer attempts to offload an alternative node. 
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Parameter 

(average, one-minute 
interval) 

Framework 

Borg MASB 

Idle Nodes 1.01 (0.01%) 78.10 (0.63%) 

STA1 Nodes 820.49 (6.58%) 487.01 (3.91%) 

TA1 Nodes 459.57 (3.69%) 564.18 (4.53%) 

PA1 Nodes 6597.14 (52.94%) 8508.08 (68.28%) 

DA1 Nodes 4578.49 (36.74%) 2810.69 (22.56%) 

Overloaded Nodes 4.04 (0.03%) 12.62 (0.10%) 

1. STA, TA, PA and DA as defined in section Error! Reference source not found.. 

Table 3: Benchmark results – Borg and MASB 

Table 3 directly compares ARS parameters of both pre-recorded Google’s Borg and MASB 

simulations. The listed ASR values highlight the differences in Borg and MASB workings: 

• Idle Nodes – Borg’s design has a definite advantage over MASB because Borg’s 

schedulers can access the shared cluster’s state and iterate over the complete set of system nodes. 

MASB relies on a network of BAs, each of which has only partial information about the cluster’s 

state. Therefore, a subset of idle nodes might never be scored, even if they represent the best 

allocation for a given service. 

• STA and TA Nodes – in both systems, under normal workload conditions, incoming tasks 

are reasonably well distributed between the nodes. Only ca.10% of all system nodes register 

higher resource usage scores, when at least one of resource utilisation levels crosses 90%. The 

exact scoring algorithm of Google’s Borg has not been disclosed, but the results suggest a degree 

of similarity to the SIAS function. 

• PA and DA Nodes – the ratio of PAs to DAs is visibly different in Borg and MASB. Borg’s 

original scheduling decisions had a ratio of roughly 3:2, meaning that for every three 

proportionally allocated nodes in the system, there were two nodes that were disproportionately 

allocated. MASB managed to achieve a better ratio of 3:1, suggesting that the use of SIAS and 

SRAS scoring functions together with VM-LM feature can potentially create a more balanced 

scheduling system. 

Given the superior ratio of PA to DA nodes as measured, and the possibility of increased 

performance (throughput), the next experiment focused on processing increased workload. 

7.7. PERFORMANCE 

The MASB framework has been designed as a general solution for balancing workload in a 

decentralised computing system. It works correctly with default parameters. However, in order 

to achieve high resources utilisation and low resources waste, extensive fine-tuning was required. 

The importance of fine-tuning can be seen in the fact that, for example, MASB was able to initially 

schedule only ca.85% of GCD tasks without overly overloading the nodes. Several enhancements 

were implemented, including: 

• Splitting the SAS function into SIAS and SRAS and then limiting the number of suitable 

nodes examined in those functions (200 and 2k respectively); 
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• Fine-tuning SCS function to maintain the balance between migration cost and the node 

allocation score as specified in (Sliwko and Getov, 2017), which refers to finding the right 

combination of steps of the TS algorithm, as well as its termination depth; 

• Limiting the number of candidate nodes returned from BA to fifteen and introducing 

forced migrations. 

After numerous iterations, MASB was eventually able to schedule the entire GCD workload, with 

additional tasks also added. Table 4 presents a comparison of the results with the additional 

workload. 

Parameter 
(average per 

minute) 

Workload Size 

100% (original) 102% 104% 106% 

Nodes Count 12460.391 12460.361 12460.681 12460.351 

Tasks Count 132061.151 134738.921 137399.931 142936.051 

Global CPU 
Usage Ratio 

43.64% 44.54% 45.42% 46.89% 

Global Memory 
Usage Ratio 

62.05% 63.33% 64.58% 66.57% 

Idle Nodes 
76.41 

(0.61%) 

73.08 

(0.59%) 

72.75 

(0.58%) 

52.18 

(0.42%) 

STA Nodes 
479.91 

(3.85%) 

480.22 

(3.85%) 

423.51 

(3.40%) 

447.73 

(3.59%) 

TA Nodes 
566.20 

(4.54%) 

545.74 

(4.38%) 

447.75 

(3.59%) 

355.88 

(2.86%) 

PA Nodes 
8507.49 

(68.28%) 

8718.76 

(69.97%) 

9316.35 

(74.77%) 

9576.67 

(76.86%) 

DA Nodes 
2818.11 

(22.62%) 

2610.04 

(20.95%) 

2084.06 

(16.73%) 

1718.08 

(13.79%) 

Overloaded 
Nodes 

12.28 

(0.10%) 

32.53 

(0.26%) 

116.25 

(0.93%) 

309.79 

(2.49%) 

1. The AGOCS framework itself records minuscule variances in node and task counts that are the 
result of concurrent update operations, while modifying shared context data objects. In practice, 

less than 0.04% of update operations were affected. See (Sliwko and Getov, 2016) for details. 

Table 4: Performance results (throughput, 100%-106% workload size) 

As demonstrated above, MASB was able to schedule, on average, an additional ca.2.6k tasks per 

minute. Further tuning was unable to improve those results, with workload sizes greater than 

102% increasing the number of overloaded nodes above the defined threshold of 0.5%. 

To further ensure the correctness of the attained results, another set of experiments was run in 

parallel. Here, instead of multiplying the original GCD workload, the random machines were 
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removed from the cluster until the workload could no longer be fitted. This method, known as 

‘cell compaction’, is suggested in (Verma et al., 2015). Table 5 details the experimental results: 

Parameter 
(average per 

minute) 

Cluster Size 

100% (original) 99% 98% 97% 

Nodes Count 12460.39 12332.92 12218.61 12081.30 

Tasks Count 132061.15 132057.96 132057.54 132055.86 

Global CPU 
Usage Ratio 

43.64% 44.09% 44.52% 45.05% 

Global Memory 
Usage Ratio 

62.05% 62.72% 63.39% 64.08% 

Idle Nodes 
76.41 

(0.61%) 

53.29 

(0.43%) 

58.96 

(0.48%) 

75.87 

(0.63%) 

STA Nodes 
479.91 

(3.85%) 

480.28 

(3.89%) 

404.13 

(3.31%) 

448.67 

(3.71%) 

TA Nodes 
566.20 

(4.54%) 

572.24 

(4.64%) 

485.55 

(3.97%) 

500.75 

(4.14%) 

PA Nodes 
8507.49 

(68.28%) 

8412.71 

(68.21%) 

8866.13 

(72.56%) 

8663.88 

(71.66%) 

DA Nodes 
2818.11 

(22.62%) 

2800.30 

(22.71%) 

2361.64 

(19.33%) 

2339.31 

(19.35%) 

Overloaded 
Nodes 

12.28 

(0.10%) 

14.11 

(0.11%) 

42.20 

(0.35%) 

62.07 

(0.51%) 

Table 5: Performance results (throughput, 97%-100% cluster size) 

Similar to the previously detailed experiments which had augmented workload, even when the 

cluster size was reduced to ca.98% of its original size (ca.242 nodes being removed on average), 

the original GCD workload could still be fitted without breaching the 0.5% limit of overloaded 

nodes.  

Although the throughput of the original Google Scheduler could not be significantly improved, 

the results from both methods of evaluation show the benefits of using VM-LM to fit additional 

tasks in an already very tightly-fitted cluster. 

On average, GCD traces utilise ca.40-50% of the globally available CPUs and ca.60-70% of globally 

available memory while continuously guaranteeing ca.85% of CPUs and ca.70% of memory to 

production tasks to handle RUS instances. It should be noted that Borg’s scheduling routines have 

been perfected following decades of work by a team of brilliant Google engineers. The conclusion 

of this research is that, it is hard to substantially improve this impressive result given those 

constraints. 
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7.8. MIGRATION COST 

The MASB framework relies on a VM-LM feature to balance workload by moving running tasks 

across Cloud nodes. While the VM-LM process is reasonably cheap in terms of the computing 

power, it does incur a non-trivial cost on the Cloud’s infrastructure. In order to avoid excessive 

networks transfers, NAs are carefully deciding which services will be migrated out from a given 

node. To score candidate services the SCS function is used which takes the service’s estimated 

migration cost into consideration as well as released resources (see 6.1 for more details). 

Unexpectedly, when searching for ways to lower the total migration cost, although modifications 

of SCS function seemed to be the most palpable place to start, significantly better results were 

not obtained. Based on experience from previous experiments, it was discovered that the biggest 

reduction in service migrations was achieved by improving the quality of the initial task allocation.  

Parameter 
(average per 

minute) 

Scoring Functions 

SIAS 

SRAS 

SIAS 

SRAS|GAIN 

SIAS|GAIN 

SRAS 

SIAS|GAIN 

SRAS|GAIN 

Total Migration 
Cost [GB] 

1490.65 7008.30 1252.50 5925.41 

Idle Nodes 
83.54 

(0.67%) 

105.80 

(0.85%) 

76.14 

(0.61%) 

79.33 

(0.64%) 

STA Nodes 
495.09 

(3.97%) 

687.77 

(5.52%) 

490.42 

(3.94%) 

654.18 

(5.25%) 

TA Nodes 
656.67 

(4.54%) 

560.65 

(4.50%) 

558.57 

(4.48%) 

547.38 

(4.39%) 

PA Nodes 
8515.95 

(68.34%) 

8492.21 

(68.15%) 

8511.61 

(68.31%) 

8451.12 

(67.82%) 

DA Nodes 
2785.23 

(22.35%) 

2586.43 

(20.76%) 

2810.95 

(22.56%) 

2707.73 

(21.73%) 

Overloaded 
Nodes 

14.88 

(0.12%) 

27.54 

(0.22%) 

12.67 

(0.10%) 

20.61 

(0.17%) 

Table 6: Results comparison of SAS and SIAS+SRAS (migration cost) 

The initial approach focused on prioritising gains in the AS for an individual node. For example, if 

when migrating a task to node A its AS increased by 20%, it was prioritised over migration to node 

B which would increase its score by 10% even if node B score had reached its highest allowable 

utilisation of all resources, i.e. 90% CPU cores and 90% memory. The scoring function variants of 

SIAS and SRAS are defined here as SIAS|GAIN and SRAS|GAIN respectively: 

• 𝑆𝐼𝐴𝑆|𝐺𝐴𝐼𝑁 = 𝑆𝐼𝐴𝑆(𝑇′) − 𝑆𝐼𝐴𝑆(𝑇) and 

• 𝑆𝑅𝐴𝑆|𝐺𝐴𝐼𝑁 = 𝑆𝑅𝐴𝑆(𝑇′) − 𝑆𝑅𝐴𝑆(𝑇) 

where 𝑇 is the current set of allocated tasks, and 𝑇′ is the candidate set of allocated tasks on a 

given node. Table 6 presents the results under the variants of the scoring functions. 
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The combination of SIAS|GAIN and SRAS functions was most efficient (i.e. the total average 

migration cost was lowest) while ASR remained virtually unchanged. The experiment showed that 

although focusing on an individual node’s allocation score gains is a valid strategy during initial 

service allocation, service reallocation should be dedicated to maximizing the absolute value of 

the allocation score of all nodes. As mentioned above, the majority of tasks scheduled on the GCD 

cluster are short-lived batch jobs which tend not to have high resource requirements (Sliwko and 

Getov, 2016). As such, there is no need to carefully fit them to a node. As a result of their limited 

time on the cluster, the chance of reallocation is low. Long-running services, however, should be 

fitted tightly onto available nodes and continue to run there due to the additional cost of further 

reallocations because of the typically large amounts of used memory. 

7.9. SCALABILITY 

 

Parameter 
(average per 

minute) 

Cluster Size 

12.5k (original) 25k 50k 100k 

Nodes Count 12460.70 24921.49 49842.99 99685.97 

Tasks Count 132061.35 264155.80 528336.38 1056645.92 

Idle Nodes 
71.61 

(0.57%) 

95.82 

(0.38%) 

226.42 

(0.45%) 

413.03 

(0.41%) 

STA Nodes 
492.67 

(3.95%) 

805.60 

(3.23%) 

1920.99 

(3.85%) 

3868.22 

(3.88%) 

TA Nodes 
570.37 

(4.58%) 

962.14 

(3.86%) 

2232.10 

(4.47%) 

4300.70 

(4.31%) 

PA Nodes 
8502.06 

(68.23%) 

18118.11 

(72.70%) 

34102.21 

(68.33%) 

68999.49 

(69.13%) 

DA Nodes 
2812.74 

(22.57%) 

4914.55 

(19.72%) 

11324.77 

(22.69%) 

22031.79 

(22.07%) 

Overloaded 
Nodes 

11.26 

(0.09%) 

25.25 

(0.10%) 

36.49 

(0.07%) 

71.83 

(0.07%) 

Table 7: Scalability tests – 12.5k, 25k, 50k and 100k nodes 

The final step in the experiments was to examine the scalability of the MASB framework. Due to 

the simulation’s high computational requirements, its one-minute time slices were split into 

‘rounds’ in which every NA could both respond to migration requests as well as send its own 

requests, although sent requests would be unanswered until the next ‘round’. This meant that 

the simulated scenarios were as realistic as possible whilst also emulating massive Cloud 

installations. The typical time required to run a single full simulation with 100k nodes cluster, with 

both nodes and tasks proportionally multiplied, was around nine months. In order to maximise 

the resource usage of the testing environment, several simulations were run in parallel on the 

University of Westminster HPC cluster. 
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Google has never disclosed the size of their largest cluster, but it has been noted in Verma et al. 

(2015) that Borg computing cells are similarly sized to the clusters managed by Microsoft’s Apollo 

system, which have in excess of 20k nodes (Boutin et al., 2014). A 12.5k node cells in GCD traces 

have been described as ‘average’ or ‘median’, cells with fewer than 5k nodes have been called 

‘small’ or ‘test’ (Verma et al., 2015). Additionally, (ibid.) gives an example of a larger cell C, which 

is 150% the size of cell A and therefore also approximately 20k nodes. As such, in this research it 

is assumed that the computing cell of the large Borg is around 20-25k nodes. 

Table 7 demonstrates the results achieved through the multiplication of the original GCD 

workload; it also highlights the lack of changes in ASR values. MASB was able to orchestrate a cell 

size of 100k without a noticeable scalability cost and without crossing the limit of 0.5% overloaded 

nodes. With the current MASB framework implementation, the simulation of this size took 

around nine months on a single node of the University of Westminster HPC. 

One of the questions raised is whether this result could be repeated in a live environment. 

Although a high-fidelity simulation gives high confidence, this question cannot be answered 

without actual field tests. Google engineers performed extremely well when building and later 

fine-tuning Borg’s scheduler. The Google Borg system was built with hardware without 

virtualisation support and offered no mechanism to reallocate the running services to alternative 

machines, while the concept of MASB relies on VM-LM feature which allows running services to 

be offloaded. Therefore, the actual field tests would require very substantial monetary 

investments. 

8. RELATED WORK 
During this research, several related papers and patents were identified and analysed. In addition 

to the Omega scheduler described above (Schwarzkopf et al., 2013), several other systems based 

on a similar concept were identified and are described below.  

8.1. ANGEL 
The ANGEL system (Zhu et al., 2015) is based on a similar concept wherein a multi-agent system 

manages its workload in a virtualised Cloud environment. This solution also takes advantage of 

the VM-LM feature to reallocate running tasks to an alternative node if necessary. Within this 

system there are three kinds of agents, namely Task Agent, VM agent, and Manager Agent. Task 

Agent exists for the duration of a task, created upon task arrival and destroyed when the task is 

complete. VM Agent represents a VM hypervisor running on a physical node and 

accepting/rejecting tasks. Manager Agent acts as a leader for this computing cell and stores the 

complete system state in a ‘VM Information Board’. Manager Agent also uses stored state 

information to match Task Agents with VM Agents, a process which is referred to as ‘basic 

matching phase’. 

As in MASB, the key task scheduling process is the selection of the environment where the task is 

to be executed. In ANGEL, newly-arrived Task Agents are bidding for available VMs, using the 

information stored in Manager Agent. This process is referred to as the ‘forward announcement-

bidding phase’ in the paper. The VM Agent then selects which task is will accept, a process 

referred to as ‘backward announcement-bidding phase’. VM Agents are constantly updating 

Manager Agent as to changes in their state, such as available resource (CPU and available memory) 

changes, VM creations and cancellations.  

While the basic concept of ANGEL and the MASB system is similar, the design of the architecture 

differs substantially. In comparison, during the development of MASB, it was found that the sheer 
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number of tasks made it unpractical to create an entity for each task responsible for its allocation; 

given this, the responsibility was assigned to NAs. In MASB, NAs themselves are responsible for 

keeping their node stable and offloading overloading tasks to alternative nodes. 

The ANGEL stores the global system state in Manager Agent, while in MASB a subsystem of BAs 

has this responsibility. The ANGEL system assumes that the stored system state is always current, 

and so bases its allocation decisions on this fact. MASB, however, accepts this information as 

outdated by design, and so uses it only for building initial candidate nodes list which is then sent 

to NAs. The actual task allocation is resolved later between NAs themselves. 

MASB is focused on a Cluster performance and scalability whereby resource usages gaps are 

reduced and tasks are fitted into available nodes. The focus of the project was to achieve tightness 

of task allocations no worse than in the GCD traces while improving scalability. The aim of ANGEL 

is to guarantee the ratio of tasks guaranteed to meet their deadlines which are also priority-

adjusted. It should be noted that the authors of ANGEL also tested their solution on GCD traces. 

In so doing, they acknowledged the difficulty of conducting experiments on the whole month-

long traces because of the enormous count of tasks in the trace logs and performed their 

experiments exclusively on day 18th of traces which has been recognised as being the most 

representative time period in GCD traces (Moreno et al., 2013). However, the results presented 

use different metrics and do not specify further details of the experiments, such as whether 

authors also matched task constraints and whether tasks were allocated with regards to handing 

RUS instances. 

8.2. US PATENT 5,031,089 
(Liu and Silvester, 1991) filed a patent which described a set of routines that could be deployed 

on nodes in order to balance system-wide workload in better way. The first routine periodically 

examines a number of jobs on the node's queue and computes the 'workload value' which is then 

provided on request to other nodes by the second routine. The third routine, meanwhile, is 

triggered periodically when the node is idle, and at the end of each job completion. This routine 

contains the main bulk of load balancing logic and evaluates whether the node's 'workload value' 

is below a pre-established value which would indicate that the node is relatively idle. If the node 

is recognised as being under-utilised and available for more jobs, then the routine will poll all the 

other nodes for their 'workload value', and transfer jobs from the node with the highest 'workload 

value' to its own queue. 

The feasibility of this invention was validated via a number of simulations, although those results 

are not shared in the cited patent. The authors list several assumptions made during the 

performance testing of this study, such as the homogeneity of all the tasks and their resource 

requirements, as well as the assumption that the job's transfer cost is negligible. Only the job’s 

queue length was used as 'workload value'. 

The main criticism of this solution is that it oversimplifies the Cluster workload's model, and it 

omits the continuous changes of resources used by jobs. Also, only non-started jobs can be 

transferred to alternative nodes. The solution relies on polling all nodes in the cluster for their 

utilisation levels which in a large cluster might be not feasible and may create a bottleneck. 

8.3. US PATENT 8,645,745 
In this publication (Barsness et al., 2014), authors note that there is a problem when a centralised 

job scheduler needs to pass through a large number of nodes in order to find one which can be 

used to allocate and run the task. If this scheduler manages the workload of a large computing 

cell, the scheduling efficiency is reduced. The scheduler may also need to keep track of the 
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currently running task execution states. When the centralised scheduler is tasked to manage a 

large number of tasks and simultaneously update the global system state, a bottleneck may be 

created. Additionally, a single point of failure is created, meaning that when a centralised 

scheduler fails, the entire computing cell cannot function. 

To solve the above issues, instead of a centralised job scheduler, a solution is proposed whereby 

each node is continuously scanning a shared-file to determine which job could be executed on 

this node. When a job requires multiple nodes, the one on the nodes becomes a primary node 

which then assigns and monitors the job execution on the multiple nodes. 

In comparison to MASB, the main similarity is that there is no centralised manager to assign tasks 

to nodes which means that nodes are themselves responsible for selecting and then running the 

accepted tasks. In addition, there are substantial differences in terms of task allocation routines. 

In this patent, nodes select tasks from shared–files based on task requirements, while in MASB a 

task allocation is a multi-step process in which each node tries to increase its AS by selecting and 

offloading tasks. Given that the patent paper provides no results from experiments, it is difficult 

to directly compare systems’ performances. 

9. SUMMARY AND CONCLUSIONS 
The primary challenge when sequencing a queue of tasks on a cluster is to fit them tightly, and in 

so doing reduce resource usage gaps. The scheduling algorithm attempts to reduce the situations 

where a resource on a given node is overly un-utilised at the same time that other resources on 

that node are mostly allocated. It is extremely important to shrink the gaps in resource utilisation 

and to allocate them proportionally, especially when initially scheduling new tasks which tend to 

have balanced resource requirements. 

Fitting objects of different volume into a finite number of containers is known as bin-packing 

problem and belongs to class of NP-Hard problems. The traditional way of solving NP-Hard 

problems are meta-heuristic algorithms. However, experiments demonstrated that although 

meta-heuristic algorithms yield good solutions, they do not scale well to the required number of 

nodes in a Cloud system.  

Alternative solutions and a large number of optimisations can be devised, such as caching 

computed solutions and then retrieving them based on task similarity, multiple concurrent 

schedulers working on a single data store, and pre-allocating resources for the whole task batches 

(Verma et al., 2015). However, these solutions and optimisations still incur substantial 

computational costs, and it is inevitable that any model where the head node processes all 

scheduling logic by itself will eventually work less effectively when the cluster size grows and the 

frequency of incoming tasks increases. 

The MASB framework offers an alternative approach to task allocations in that all the actual 

processing of scheduling logic is offloaded to nodes themselves. This framework uses loose 

coupling at every stage of its scheduling flow, meaning that scheduling decisions are made only 

on locally-cached knowledge and all communication between nodes is kept to minimum. Each 

node tries to increase its AS by selecting and offloading tasks, with the assumption being that by 

bettering individual ASs, the global system performance will be improved. This design also takes 

advantage of the VM-LM feature, where a running service within a VM instance can be migrated 

on the fly to an alternative node without stopping a program execution. 

Design of this schema created a set of new challenges, such as selecting alternative nodes with 

limited and non-current knowledge about the state of other nodes, estimating the VM-LM cost 
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of a running service, understanding the classifying and scoring functions of the allocation type of 

a node, and designing the stateless node-to-node communication protocol, to identify just a few. 

In this research, realistic (i.e. pre-recorded) workload traces from GCD were used and were run 

on the AGOCS framework as a very detailed simulation (Sliwko and Getov, 2016). The costs 

involved were the substantial computing power required to run experiments as well as time, in 

that a single simulation run took about a month on a forty-core (twenty physical cores + HT 

siblings) machine. In order to benchmark the research results, original scheduling decisions made 

by Google’s Borg scheduler are examined which are also part of GCD traces. This generated 

statistics such as total resource usage, the number of idle nodes and production-allocated 

resources. 

When examining GCD traces, it is important to note that Google’s engineers did a phenomenal 

job in first designing and then iteratively improving the Borg system. Incoming tasks are packed 

very tightly and, although production jobs always have additional resources available to them 

within defined requirements’ limits, the spare resources are efficiently recycled for low priority 

jobs. Google Cluster has been built upon hardware without direct support for virtualisation, 

meaning that its orchestrating software design had to accommodate this limitation. This research 

should be considered an as-if scenario and assumes the availability of the VM-LM feature to 

shuffle running tasks within a Cluster. 

In this research, there was only limited success in terms of improving the throughput of executed 

tasks on a simulated computing cell which was mainly due to the constraints arising from handling 

RUS instances. However, MASB could achieve higher scalability and run multiple sizes of 

examined computing cell without noticeable scalability costs. Simulations up to 100k nodes from 

GCD were tested, yielding relatively comparable results when run with smaller instances of 

simulations. 

Although the experimental results prove that it is feasible to deploy the presented decentralised 

architecture in a live environment, there are a number of possible other improvements, as listed 

below: 

• During experimentations, several nodes remained idle. This effect was a result of 

iterating only a limited number of nodes while computing a set of candidate nodes for a given 

task migration. A potential solution to this issue is a separate size-limited list of relatively under-

utilized nodes which would be compulsorily scored each time a BA is issued a 

GetCandidateNodesRequest request. Such a list could be exchanged separately between BAs; 

• The SCS routine (step 1 in the SAN protocol) is triggered only when the NA detects that 

its node is overloaded. However, the system could employ a more proactive approach in which 

the NA would periodically try to offload its services in order to improve its AS, even if the node is 

stable. This would create a secondary mechanism to distribute the load, which would potentially 

reduce resource utilization gaps even further. However, this feature would also place additional 

pressure on BAs and, as such, needs to be carefully balanced; 

• In a real-world system it is expected that a number of nodes will experience failure. NA’s 

AI module could maintain a set of blacklisted nodes which repeatedly did not respond to requests. 

Such a set could be shared with BAs, similar to the way it is implemented in Fuxi (Zhang et al., 

2014), and presented to system administrators. 

• The MASB prototype does not address fault-tolerance which is an important aspect of 

Cloud design. This feature could be realised in multiple ways, such as running cloned instances of 
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services, periodically saving process checkpoints, and ensuring the applications’ state is 

synchronised across all its instances; 

• The proposed design does not account for task priorities, i.e. tasks are only split into 

production and non-production groups. Production tasks have committed resources which, under 

normal circumstances, are guaranteed to be available. However, during critical system-wide 

failures, such as a power failure or network infrastructure collapse, the system should degrade 

gracefully (as opposed to an uncontrolled crash). In scenarios where the current workload cannot 

be sustained, the system should shut down lower priority tasks first and use remaining available 

nodes to offload high-priority tasks; 

• In this project, it is assumed that NAs and BAs agents are continuously running without 

breakdowns. Nevertheless, agents are also a piece of software, meaning that they are prone to 

bugs and errors. As a possible improvement to detect and restore hung agents, a hierarchy model 

could be introduced in which an agent supervises a number of other agents and restarts them if 

necessary. This concept is similar to the Akka Actors implementation (Roestenburg et al., 2015) 

in which a parent actor manages the failures of its children. Additionally, a hierarchy of BAs could 

be used to propagate the cluster’s state knowledge in a more efficient manner; 

• The presented experimental results are of good quality; nevertheless, they suggest a 

number of possible improvements, especially in locating and then scheduling tasks to idle nodes. 

One possible improvement could be to share idle nodes between all BAs and then prioritising 

them over utilised nodes; 

• Energy efficiency is the next possible area to expand. In its current design, MASB focuses 

on reducing the cost of service reallocations necessary to keep the Cloud system stable. However, 

this approach could be shifted to focus on completely offloading idle nodes, at which point the 

system would be able to power down those nodes in order to save energy; 

• Resource usage quotas per user, group or other entity, would make another welcome 

feature, often present in commercial Cluster schedulers. However, it would also require adding 

an accountancy module with a decentralised dataset in order to maintain scalability; 

• MASB estimates the task migration cost and considers this value it when selecting which 

tasks to migrate out from a node. However, it does not calculate the fact that neighbouring nodes 

(e.g. those in the same server rack) might offer much faster transfer rates than more remote 

nodes. Therefore, adjusting the task migration cost by the nodes’ distances could improve the 

overall cluster performance; 

• MASB does not attempt to implement locality optimisation, when the task’s part of a 

distributed file is processed faster if accessed locally. Currently, GCD task descriptions contain 

only restrictions which disallow nodes that the task could be executed on. However, adding 

optional meta-data, such as the ID of the distributed file’s part, could prioritise a set of nodes and 

improve overall the cluster performance. This functionality is featured in some of the Big Data 

frameworks. 

The suggested directions of future study and possible expansions as listed above have the 

potential to improve the results of this research. Nevertheless, the focus of this paper was to 

research and design a feasible strategy for managing and balancing a workload within a virtualized 

Cloud system, an objective which has been achieved. 
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