2,450 research outputs found

    Uniqueness thresholds on trees versus graphs

    Full text link
    Counter to the general notion that the regular tree is the worst case for decay of correlation between sets and nodes, we produce an example of a multi-spin interacting system which has uniqueness on the dd-regular tree but does not have uniqueness on some infinite dd-regular graphs.Comment: Published in at http://dx.doi.org/10.1214/07-AAP508 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Rapid Mixing for Lattice Colorings with Fewer Colors

    Full text link
    We provide an optimally mixing Markov chain for 6-colorings of the square lattice on rectangular regions with free, fixed, or toroidal boundary conditions. This implies that the uniform distribution on the set of such colorings has strong spatial mixing, so that the 6-state Potts antiferromagnet has a finite correlation length and a unique Gibbs measure at zero temperature. Four and five are now the only remaining values of q for which it is not known whether there exists a rapidly mixing Markov chain for q-colorings of the square lattice.Comment: Appeared in Proc. LATIN 2004, to appear in JSTA

    Coupling with the stationary distribution and improved sampling for colorings and independent sets

    Full text link
    We present an improved coupling technique for analyzing the mixing time of Markov chains. Using our technique, we simplify and extend previous results for sampling colorings and independent sets. Our approach uses properties of the stationary distribution to avoid worst-case configurations which arise in the traditional approach. As an application, we show that for k/Δ>1.764k/\Delta >1.764, the Glauber dynamics on kk-colorings of a graph on nn vertices with maximum degree Δ\Delta converges in O(nlogn)O(n\log n) steps, assuming Δ=Ω(logn)\Delta =\Omega(\log n) and that the graph is triangle-free. Previously, girth 5\ge 5 was needed. As a second application, we give a polynomial-time algorithm for sampling weighted independent sets from the Gibbs distribution of the hard-core lattice gas model at fugacity λ<(1ϵ)e/Δ\lambda <(1-\epsilon)e/\Delta, on a regular graph GG on nn vertices of degree Δ=Ω(logn)\Delta =\Omega(\log n) and girth 6\ge 6. The best known algorithm for general graphs currently assumes λ<2/(Δ2)\lambda <2/(\Delta -2).Comment: Published at http://dx.doi.org/10.1214/105051606000000330 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Rapid Mixing of Gibbs Sampling on Graphs that are Sparse on Average

    Get PDF
    In this work we show that for every d<d < \infty and the Ising model defined on G(n,d/n)G(n,d/n), there exists a βd>0\beta_d > 0, such that for all β<βd\beta < \beta_d with probability going to 1 as nn \to \infty, the mixing time of the dynamics on G(n,d/n)G(n,d/n) is polynomial in nn. Our results are the first polynomial time mixing results proven for a natural model on G(n,d/n)G(n,d/n) for d>1d > 1 where the parameters of the model do not depend on nn. They also provide a rare example where one can prove a polynomial time mixing of Gibbs sampler in a situation where the actual mixing time is slower than n \polylog(n). Our proof exploits in novel ways the local treelike structure of Erd\H{o}s-R\'enyi random graphs, comparison and block dynamics arguments and a recent result of Weitz. Our results extend to much more general families of graphs which are sparse in some average sense and to much more general interactions. In particular, they apply to any graph for which every vertex vv of the graph has a neighborhood N(v)N(v) of radius O(logn)O(\log n) in which the induced sub-graph is a tree union at most O(logn)O(\log n) edges and where for each simple path in N(v)N(v) the sum of the vertex degrees along the path is O(logn)O(\log n). Moreover, our result apply also in the case of arbitrary external fields and provide the first FPRAS for sampling the Ising distribution in this case. We finally present a non Markov Chain algorithm for sampling the distribution which is effective for a wider range of parameters. In particular, for G(n,d/n)G(n,d/n) it applies for all external fields and β<βd\beta < \beta_d, where dtanh(βd)=1d \tanh(\beta_d) = 1 is the critical point for decay of correlation for the Ising model on G(n,d/n)G(n,d/n).Comment: Corrected proof of Lemma 2.

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for qαd+βq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large β=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree

    Correlation decay and partition function zeros: Algorithms and phase transitions

    Full text link
    We explore connections between the phenomenon of correlation decay and the location of Lee-Yang and Fisher zeros for various spin systems. In particular we show that, in many instances, proofs showing that weak spatial mixing on the Bethe lattice (infinite Δ\Delta-regular tree) implies strong spatial mixing on all graphs of maximum degree Δ\Delta can be lifted to the complex plane, establishing the absence of zeros of the associated partition function in a complex neighborhood of the region in parameter space corresponding to strong spatial mixing. This allows us to give unified proofs of several recent results of this kind, including the resolution by Peters and Regts of the Sokal conjecture for the partition function of the hard core lattice gas. It also allows us to prove new results on the location of Lee-Yang zeros of the anti-ferromagnetic Ising model. We show further that our methods extend to the case when weak spatial mixing on the Bethe lattice is not known to be equivalent to strong spatial mixing on all graphs. In particular, we show that results on strong spatial mixing in the anti-ferromagnetic Potts model can be lifted to the complex plane to give new zero-freeness results for the associated partition function. This extension allows us to give the first deterministic FPTAS for counting the number of qq-colorings of a graph of maximum degree Δ\Delta provided only that q2Δq\ge 2\Delta. This matches the natural bound for randomized algorithms obtained by a straightforward application of Markov chain Monte Carlo. We also give an improved version of this result for triangle-free graphs

    Strong spatial mixing of list coloring of graphs

    Get PDF
    The property of spatial mixing and strong spatial mixing in spin systems has been of interest because of its implications on uniqueness of Gibbs measures on infinite graphs and efficient approximation of counting problems that are otherwise known to be #P hard. In the context of coloring, strong spatial mixing has been established for Kelly trees in (Ge and Stefankovic, arXiv:1102.2886v3 (2011)) when q ≥ α[superscript *] Δ + 1 where q the number of colors, Δ is the degree and α[superscript *] is the unique solution to xe[superscript -1/x] = 1. It has also been established in (Goldberg et al., SICOMP 35 (2005) 486–517) for bounded degree lattice graphs whenever q ≥ α[superscript *] Δ - β for some constant β, where Δ is the maximum vertex degree of the graph. We establish strong spatial mixing for a more general problem, namely list coloring, for arbitrary bounded degree triangle-free graphs. Our results hold for any α > α[superscript *] whenever the size of the list of each vertex v is at least αΔ(v) + β where Δ(v) is the degree of vertex v and β is a constant that only depends on α. The result is obtained by proving the decay of correlations of marginal probabilities associated with graph nodes measured using a suitably chosen error function
    corecore