20 research outputs found

    New Algorithms for Solving Tropical Linear Systems

    Full text link
    The problem of solving tropical linear systems, a natural problem of tropical mathematics, has already proven to be very interesting from the algorithmic point of view: it is known to be in NPcoNPNP\cap coNP but no polynomial time algorithm is known, although counterexamples for existing pseudopolynomial algorithms are (and have to be) very complex. In this work, we continue the study of algorithms for solving tropical linear systems. First, we present a new reformulation of Grigoriev's algorithm that brings it closer to the algorithm of Akian, Gaubert, and Guterman; this lets us formulate a whole family of new algorithms, and we present algorithms from this family for which no known superpolynomial counterexamples work. Second, we present a family of algorithms for solving overdetermined tropical systems. We show that for weakly overdetermined systems, there are polynomial algorithms in this family. We also present a concrete algorithm from this family that can solve a tropical linear system defined by an m×nm\times n matrix with maximal element MM in time Θ((mn)poly(m,n,logM))\Theta\left({m \choose n} \mathrm{poly}\left(m, n, \log M\right)\right), and this time matches the complexity of the best of previously known algorithms for feasibility testing.Comment: 17 page

    Rational semimodules over the max-plus semiring and geometric approach of discrete event systems

    Get PDF
    We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule S^n over a semiring S is rational if it has a generating family that is a rational subset of S^n, S^n being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (union, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.Comment: 24 pages, 9 postscript figures; example in section 4.3 expande

    Strong regularity of matrices in a discrete bounded bottleneck algebra

    Get PDF
    AbstractThe results concerning strong regularity of matrices over bottleneck algebras are reviewed. We extend the known conditions to the discrete bounded case and modify the known algorithms for testing strong regularity

    The Whitney embedding theorem for tropical torsion modules Classification of tropical modules

    Get PDF
    AbstractWe prove here a tropical version of the well-known Whitney embedding theorem [32] stating that a smooth connected m-dimensional compact differential manifold can be embedded into R2m+1.The tropical version of this theorem states that a tropical torsion module with m generators can always be embedded into the free tropical module R̲p, where p (equals to 2 for m=2, and 3⩽p⩽m(m-1) otherwise) is the number of rows supporting the torsion, when the generators are given by the (independent) columns of a matrix of size n×m.As a corollary, we get that tropical m-dimensional torsion modules are classified by a (m-1)m(m-1)-1-parameter family

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update

    Idempotent structures in optimization

    Get PDF
    Consider the set A = R ∪ {+∞} with the binary operations o1 = max and o2 = + and denote by An the set of vectors v = (v1,...,vn) with entries in A. Let the generalised sum u o1 v of two vectors denote the vector with entries uj o1 vj , and the product a o2 v of an element a ∈ A and a vector v ∈ An denote the vector with the entries a o2 vj . With these operations, the set An provides the simplest example of an idempotent semimodule. The study of idempotent semimodules and their morphisms is the subject of idempotent linear algebra, which has been developing for about 40 years already as a useful tool in a number of problems of discrete optimisation. Idempotent analysis studies infinite dimensional idempotent semimodules and is aimed at the applications to the optimisations problems with general (not necessarily finite) state spaces. We review here the main facts of idempotent analysis and its major areas of applications in optimisation theory, namely in multicriteria optimisation, in turnpike theory and mathematical economics, in the theory of generalised solutions of the Hamilton-Jacobi Bellman (HJB) equation, in the theory of games and controlled Marcov processes, in financial mathematics
    corecore