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ABSTRACT 

The results concerning strong regularity of matrices over bottleneck algebras are 
reviewed. We extend the known conditions to the discrete bounded case and modify 
the known algorithms for testing strong regularity. © Elsevier Science Inc., 1997 

1. INTRODUCTION 

The notion of linear independence plays a crucial role in the classical 
linear algebra. However, in extremal structures the situation is somewhat 
more complicated and needs a special treatment, e.g. from the point of view 
of solution sets of systems of linear equations. The notions of strong linear 
independence and strong regularity were introduced in [8] for a lattice 
ordered group and further studied in [1] and [4]. In linearly ordered sets with 
addition replaced by maximum and multiplication by minimum (called bottle- 
neck algebras), strong linear independence was studied in [2], [3], [5], [6], and 
[7]. It turns out that other properties of the ordering need to be taken into 
account, namely density and the existence or nonexistence of universal 
bounds. We review the known conditions for strong regularity over various 
types of bottleneck algebras and extend them to the discrete bounded case. 
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Let us note here that a special case of  a bott leneck algebra based on the 
closed interval [0, 1] of  reals is called by some authors the fuzzy algebra, and 
an extensive study of  linear systems of  equations over lattices (called fuzzy 
relations) can be found in [9]. 

2. D E F I N I T I O N S  A N D  BASIC P R O P E R T I E S  

The quadruple ~q¢ = (B, • , ® , ~<) is called a bottleneck algebra (BA 
for short) if (B, ~<) is a nonempty,  linearly ordered set and $ ,  ® are binary 
operations on B defined by the formulas 

a ~ b  = m a x { a , b } ,  

a ® b = min{a,  b}. 

A BA ~,~ is called 

unbounded if for every x ~ B there exist y, z ~ B with y < x < z; 
bounded if there exist ~ B  and A ~ B  such that ~ x - K < A  for every 

x ~ B ;  
dense if for every x, y ~ B such that x < y there exists z ~ B with 

x < z  <y;  
discrete if every x ~ B (in the bounded  ease x < A) possesses a successor 

S(x) such that x < S(x) and the open interval (x, S(x)) is empty. In  the 
bounded  case we set S(A) = A. 

The best-known examples of  bott leneck algebras are the various number  
sets with the natural order: the reals R are a dense and unbounded  BA, a 
closed interval [u, v] of  reals is a dense bounded  BA with 8 = u and A = v; 
the integers Z play the role of  a discrete unbounded  BA; and finally a closed 
interval of  integers is a discrete bounded  BA. 

The set of  all m-by-n matrices over a BA ~ will be denoted by B(m, n). 
Bm is short for the set of  column vectors B(m, 1). For  b ~ B m the notation 
b >  8 means that b i > ~ for a l l i  = 1 . . . . .  m. 

P, will denote the set of  all permutations of  the set {1, 2 . . . . .  n} --- N; id 
stands for the identical permutation. Two matrices are called equivalent if 
one of  them can be obtained from the other  by row a n d / o r  column 
permutations only. 

Let A ~ B(m, n), b ~ B m be given. T (A,  b)  will denote the set of  all 
solutions x ~ B n of  the linear system of  equations A ® x = b. A matrix 
A ~ B(m, n) is said to have strongly linearly independent columns if 
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IT ( A , b ) I =  1 for some b ~ B  m such that b >  6. (It is easy to see that 
equations with the right-hand side b~ = ~ force all xj with a~j > 6 to be 
equal to 6; hence such a system can be reduced w.l.o.g, to the previous case 
by dropping those equations and the corresponding unknowns.) In the case 
m = n the matrix is called strongly regular. Ir(A)  denotes the set of all 
b E Bm, b > ~ with IT(A, b)l = 1. 

The following characterization of unique solvability was originally proved 
in [2] for the unbounded case and extended to bounded bottleneck algebras 
in [6]. 

THEOREM 1. Let A ~ B(n, n), b ~ B,. Then IT(A, b)l = 1 if  and only 
if the relations 

a,~(i ) >1 b, > ~ a,~(j) ® b~(j) (1) 
j~N , j~ i  

are satisfied by at least one ar ~ Pn and equality can hold only for  b~ = A. 

If  the inequalities in Equation (1) are fulfilled by ¢r = id, we say that A is 
in a b-normal form. For any b ~ Ir(A) the matrix A can easily be trans- 
formed to its b-normal form using only column permutations. For A 
B(n, n) and i E N let the symbol A i stand for 

i 

A , = e  
k=l  j = k + l  

Strongly regular matrices over a dense BA can be characterized by their 
equivalence to the so-called trapezoidal matrices. This was proved in [2] for 
the unbounded case and extended to the bounded case in [6]. 

DEFINITION 1. A ~ B(n,  n) is called trapezoidal if a~ > A, holds for all 
i ~ N .  

THEOREM 2. Let A ~ B(n, n). Then a necessary condition for  A to be 
strongly regular is the existence of  a trapezoidal matrix equivalent to A. 
Moreover, i f  ~ is dense, this condition is also sufficient. 

In [3] an O(n 2 log n) algorithm was proposed for recognition of matrices 
equivalent to trapezoidal ones. 
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3. STRONGLY T R A P E Z O I D A L  MATRICES 

From now on suppose that a bounded  discrete BA ~ '  is given. 

DEFINITION 2. 
vector of  a given A ~ B(n ,  n) if 

(i) a 1 = S ( A  1) 

and for i = 1,2 . . . .  , n -  1 

(ii) a~+ 1 = oq if Ai+ 1 < oq a n d ( V j  ~ iXo t , - - -  
(iii) a~+ 1 S( oq) if Ai+ 1 < oe i and ( 3 j  <~ i~(oej 
(iv) a~+ 1 = S(A~+~) if A~+ l >/ a~. 

A vector ( %  . . . . .  a,,)' ~ B n is called the overdiagonal 

o~ i =~ ai+ lj < oli), 
= ot i & ai+lj >~ oli), 

The overdiagonal vector c~(A) or simply o~ of  a matrix A ~ B(n ,  n) was 
defined in [5] for an unbounded  discrete BA. The successor is used to ensure 
that the entries of  a strictly increase in cases when this is necessary for the 
existence of  a suitable right-hand-side vector b fulfilling (1). In a bounded  
BA, when oq or Ai+ 1 is equal to A, this increase will not happen, so that 
case needs to be considered separately. 

EXAMPLE 1. We compute  the overdiagonal vectors for matrices over 
([0,101 c~ Z , e ,  ® ,  ~<). I f  

10 4 0) 
A =  4 8 6 , 

3 6 9 

then ~ ( A )  = (5, 7, 7Y, and in comput ing the entries of  or(A) points (i), (iv), 
and (ii), respectively, of  Definition 2 were used. For  

C = /i 441 10 6 i/ 
the overdiagonal vector is a ( C )  = (8, 9, 10, 10)', using successively points (i), 
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(iii), (iv), and" (iii) o f  Definit ion 2. And finally, for 

D = 

10 8 2 3 
10 10 4 0 

0 3 10 8 
6 1 9 10 

we have a ( D )  = (9, 10, 10, 10)'. Note that as soon as a 2 = 10 = A, all the 
remaining entries of  a must  be  equal  to A too. 

The  propert ies  of  the overdiagonal vector, stated in the following lemma,  
are implied directly by its definition. 

LEMMA 1. For  e v e r y  A ~ B ( n ,  n): 

(a) a 1 <<. ct 2 <~ ".. <~ a . .  I f  % = . . . .  a s f o r  some  r <~ s, then  Ol r = m 

or  f o r  all i, j ,  i # j ,  r <~ i <~ s, j >~ r, one has aij < % .  

(b) I f  % = . . . .  t~ < ~s+l ,  then  there  exists j >I r such that  a~.+U > 
O[ r • 

(c) a i >~ A i f o r  all i ~ N,  and  equal i ty  can occur  only  f o r  A i = A.  

DEFINITION 3. A ~ B ( n ,  n )  is said to be s t rongly  t rapezoidal  (ST for 
short) if  a .  >>. a i ( A )  for all i ~ N. Equali ty can hold only if both ce~(A) = A 
and akj < A for all k, j such that k 4: j and ot~(A) = a j ( A )  = A. 

Notice that obviously in the unbounded  case the inequality a .  > a i ( A )  is 
always strict. On the other  hand, in the bounded  case, the ST matrix fulfills 
A~ < A for a l l i  ~ N .  

EXAMPLE 1 (Continued).  For  the given matrices one can easily see that 
A and D are ST while C is not. 

LEMMA 2. I f A  ~ B ( n ,  n )  is ST ,  then  a ( A )  ~ I r (A) .  

Proof .  It  is sufficient to show that the inequality (1) is fulfilled with 
b = a ( A )  and zr = id. 

The  inequality aii >~ ai follows from Definit ion 3. I f  it is not strict, then 
by Definition 3 % = A. The  second part  o f  the inequality (1) can be split into 
two parts. The  first, 

j < i  
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holds because by Lemma 1 aj ~< a i for j < i, and if there is equality, then 
aij < Ot i. For the second part, 

j>i 

realize that ~j> i aij ® aj <~ ~ >  i ai <<" Ai '  and by Lemma 1(c) a i > A~ 
unless a i = A. If a i = A, then ~or al~ j > i we have aj = A and Definition 
3 implies aij < A, hence the inequality holds too. • 

The following lemmas are proved identically as in the discrete unbounded 
case in [5]. 

LEMMA 3. l_z't A ~ B(n ,  n) and b = (b 1 . . . . .  bnY ~ Ir(A) be given. I f  
A is in a b-normal  f o r m  and b 1 <<, b 2 <<, .." <~ b, ,  then b i > A i f o r  all i ~ N. 

LEMMA 4. Let  A ~ B ( n , n )  and b ~  Ir(A) with  b 1 <~ b 2 <~ ... <~ b,  
be given. I f  A is in a b-normal  forth,  then b, >1 ai( A)  f o r  i = 1,2 . . . . .  n. 

LEMMA 5. I f  A ~ B(n ,  n) is SR, then A is equivalent to a ST matrix. 

Now Lemmas 2 and 5 yield also for the bounded discrete case 

THEOREM 3. Let  ~ be a discrete bounded BA, A ~ B(n ,  n). Then A is 
strongly regular i f  and only i f  A is equivalent to a strongly trapezoidal matrix. 

4. AN ALGORITHM FOR CHECKING STRONG REGULARITY 
OF MATRICES IN A DISCRETE BOUNDED 
BOTFLENECK ALGEBRA 

In this section our aim is to develop an algorithm for checking the strong 
regularity of matrices (i.e, for finding a trapezoidal matrix equivalent to the 
tested one) similar to those which have been obtained in [3] and [5] (the 
dense and discrete unbounded cases). The main idea of the algorithm is to try 
to choose the appropriate entry of the matrix for the position in the left upper 
comer and then repeat the whole task for the reduced matrix. Previous 
results suggest that this is possible if the left-upper-corner entries are chosen 
in such a way that the overdiagonal vector of the obtained matrix is lexico- 
graphically minimal. Here, the approach from [5] needs to be only slightly 
modified to take into account the existence of A. 
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For this aim we need the following notation: 

& 
Mi( A ) = ~ aij, 

j = l  

m,(A)  = @ a,k, 
k ~j 

where j is one of the indices satisfying aij = Mi(A), and 

tx( A)  = min{m,( A ) lMi (  A ) > mi(A)}.  

Definition 3 and Lemma 1 imply the following properties of ST matrices: 

a22 

LEMMA 6. Let A ~ B(n, n) be strongly trapezoidal. Then 

(a) mi(A)  < A for all i ~ N. 
(b) all >1 S(ma( A)). I f  this inequality is fulfilled as equation, then a H = 
. . . . .  ann = A and aij < A for all i, j such that i ~ j .  
(c) Let A be written blockwise as 

All A12 / 
A = A21 A2 2 ] ,  

with All ~ B(r, r). Then both All and A22 are ST, and ai i> A r for all 
i > r .  

Lemma 6 includes also the assertion that /z(A) < A for every ST matrix. 
Hence the following lemma can be proved identically to Lemma 8 in [5] for 
the discrete unbounded case. 

LEMMA 7. Let A be equivalent to a strongly trapezoidal matrix C. Then 
A is equivalent to a strongly trapezoidal matrix D such that a l (D)  = S(Ix(A)). 

For the elimination algorithm we need some more notions. First, the 
d-overdiagonal vector a ( A ,  d) of the given matrix and the given d ~ B is 
obtained when in Definition 2 of the overdiagonal vector a ( A )  point (i) is 
replaced by setting oq = S(A 1) • d. Then, when in Definition 3 of the 
strongly trapezoidal matrix the overdiagonal vector or(A) is replaced by the 
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d-overdiagonal vector a ( A ,  d), the matrix is said to be d-strongly trape- 
zoidal. Clearly, if A is d-strongly trapezoidal for an arbitrary d, it is also 
strongly trapezoidal. 

The algorithm works as follows. As soon as the last defined ai(A)  is equal 
to A, all the remaining entries of a ( A )  must be equal to A too, and it 
remains only to find a permutation of entries equal to A such that outside it 
everything is less than A. If this is not the case, for the reduction we need to 
delete all the rows with the same a ( A )  and their corresponding columns 
simultaneously, see point (ii) in Definition 2 and Leinma l(a). Therefore also 
for the following lemma the proof of Lemma 10 stated in [5] is also valid 
mutatis mutandis. 

LEMMA 8. Let d ~ B, and suppose that A ~ B(n, n) can be written 
blockwise in the form 

( AH A12 t 
A = A21 A22 ], 

where All ~ B(r, r), and that 

(i) ml(A), mz(A) . . . .  , n t r ( A )  ~< d, 
(ii) mi(A) > d for all i = r + 1 . . . . .  n, 

(iii) a ,  > al(A,  d) for all i = 1, 2 . . . . .  r. 

Then A is equivalent to a d-ST matrix if  and only i f  A2z is equivalent to a 
d'-ST matrix with d' = ~1( A, d). 

As in [3] and [5], we ensure the low complexity of the recognition 
algorithm for the ST matrices by ordering all the rows nonincreasingly at the 
beginning, which helps to avoid the repeated searching of the matrix. After 
reordering the rows, in the obtained matrix, say AC = (bij), pointers G(i) 
and g(i)  show the positions of Mi(A) and mi(A) in AC. At first, G(i) = 1 
and g(i)  = 2 for all i ~ N. In the run of the 'algorithm these pointers need to 
be "shifted to the right" as more rows and columns are deleted, so as to still 
render the information valid for the reduced matrix. To ensure the correct- 
ness of this update, we shall maintain two sets R and C indicating which 
rows and columns are still considered in the reduced matrix. Initially, 
R = C = N. In an array of vectors P = (Pi( j ) )  we store the information 
concerning the reordering of A, so that Pi(J) = k means that the entry bij 
of matrix AC corresponds to the k th entry in row i in the matrix A. 
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Finally, the vectors r, e indicate the order of the rows and columns of A, 
producing the desired strongly trapezoidal matrix; the variable s counts the 
n u m b e r  of entries of a defined so far. 

ALGORITHM StrTrp. 

Input: Amat r i x  A ~ B(n, n), n >1 2. 
Output: Strong = t r u e  if A is equivalent  to a strongly trapezoidal matrix, 

and Strong = false  otherwise. I f  Strong = t rue ,  then the vectors r and e 
contain the desired row and column permutat ion.  

1. b e g i n  create AC, P; 
2, d := 8; Strong := false; R := N; C := N; 

3. fo r  i := 1 to  n do  b e g i n  G(i) := 1; g(i) := 2 end ;  
4, s := 0; ( c o m m e n t :  initialize) 
5. wh i l e  n - s  > l d o  

6. b e g i n  M := {i ~ R I blc(i) > bib(i)}; 
7. i f  M # O t h e n  m := min{big(i)]i ~ M} • d e lse  stop; 

8. find := false; 
9. fo r  al l  i ~ R do  

10. b e g i n  
11. i f  biz(,.) ~< m a n d  p,(G(z)). ' ~ C a n d  {biG(i ) > S(m) 

o r  [S(m)  = A a n d  biG(i ) = A]} t h e n  
12. b e g i n  R := R - {i}; C := C - {pi(G(i)}; s := s + 1; r(s) := i; 

c(s) := pi(G(i)); c~(s) := S(m); find := t r u e  
13. e n d  
14. e n d ;  
15. i f  n - s = 0 t h e n  b e g i n  Strong := t r ue ;  s top end ;  
16. i f  S(m) = 8 o r  not(find) t h e n  stop;  
17. for  all  i ~ R do  

18. b e g i n  
19. wh i l e  pi(G(i)) ¢~ C do  
20. b e g i n  G(i) := G(i) + 1; g(i) := max{G(/) + 1, g(i)} end ;  
21. wh i l e  pi(g(i)) q~ C do  g(i) := g(i) + 1 
22. end ;  
23. d := a(s) 
24. end ;  
25. i f  n - s = 1 t h e n  ( c o m m e n t :  R = {i}; C = {j}) 
26. i f  bij > S(a(s)) t h e n  
27. b e g i n  ol(s + 1) = S(a(s)); r(s + 1) := i; c(s + 1) : = j ;  Strong := 

t r u e  e n d  
28. e l se  stop;  
29. end .  
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THEOREM 4. Algorithm StrTrp is correct and terminates after using 
O(n 2 log n) arithmetical operations. 

Proof. The correctness of the algorithm follows from Lemmas 6, 7, and 
8. For the estimation of its computational complexity, first recall that for 
ordering n rows of the matrix nonincreasingly (line 1) O(n 2 log n) operations 
are needed. The remaining initialization (lines 2-4)  takes O(n) operations. 
The main while loop in lines 5-24 is repeated at most n times, because s 
strictly increases after each run. The number of operations in each while 
loop is O(n) except only for the evaluation of G(i) and g(i). However, these 
variables rise monotonically, and so the total number of operations needed 
for their computation throughout the algorithm is at most O(n2). Finally, the 
number of operations in lines 25-28 is constant. Thus the complexity of the 
whole algorithm is O(n 2 log n). • 

EXAMPLE 2. We demonstrate the application of the algorithm to the 
matrix 

(4 10 i) 
A =  8 0 

6 1 

over ([0, 10] N Z, 
We have 

, ® ,  <). 

A C =  
(lO5 i) 

8 3 , 
6 2 

p = 
2 3 
1 3 
1 3 il 

The initialization gives 

R = { 1 , 2 , 3 } ,  c = { 1 , e , 3 } ,  ~ --  o ,  

G( i )  = 1, g( i )  = 2  fo ra l l i  E {1,2,3}.  

In the first run of the while loop we obtain 

M = {1,2,3},  m = min{5,3,2} • 0 = 2, 

r (1 )  : 3, e(1) = 1, c~(1) = 3, 

and after that R = {1, 2}, C = {2, 3}. 
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The update o f  fl and arrays G and g is 

d = 3, C ( 1 )  = 1, C ( 2 )  = 2, 

The second run: 

g ( 1 )  -- 2, g ( 2 )  = 3. 

151 

M = {1,2},  m = rain{5,0} $ 3 = 3, 

hut  the cycle in lines 9 - 1 4  ends with .find = false, so the algorithm termi- 
nates on line 16 with a negative answer. 

EXAMPLE 3. Let 

A = 

4 10 9 7 
7 9 10 8 
6 7 6 9 

10 8 9 5 

over ([0, 10] N Z, $ , ® , ~<). Then  

A C =  

10 9 7 4 
10 9 8 7 

9 7 6 6 
10 9 8 5 

p = 
i 3 4 1 2 4 1 

2 1 3 
3 2 4 

R = { 1 , 2 , 3 , 4 } ,  C = { 1 , 2 , 3 , 4 } ,  d = 0, 

G ( i )  = 1, g ( i )  = 2  foral l  i ~  { 1 , 2 , 3 , 4 } .  

At first, we obtain 

M = { 1 , 2 , 3 , 4 } ,  m = min{9, 9, 7, 9} • 0 = 7, 

r ( 1 )  = 3, c (1 )  = 4, a ( 1 )  = 8; 

hence R = {1, 2, 4}, C = {1, 2, 3}. We update: 

d = 8, G ( 1 )  = G ( 2 )  = G ( 4 )  = 1, g ( 1 )  = g ( 2 )  = g ( 4 )  = 2. 
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Further ,  

M = {1 ,2 ,4} ,  m = ra in{9 ,9 ,9}  (9 8 = 9, 

r ( 2 )  = 1, c(2) = 2, 5 ( 2 )  = 9, 

r ( 3 )  = 2, c ( 3 )  = 3, 5 ( 3 )  = 9, 

r ( 4 )  = 4, c (4)  = 1, a ( 4 )  = 9, 

and the algorithm terminates  on line 15 with a positive answer. 
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