6 research outputs found

    Improper colourings inspired by Hadwiger’s conjecture

    Get PDF
    Hadwiger’s Conjecture asserts that every Kt-minor-free graph has a proper (t − 1)-colouring. We relax the conclusion in Hadwiger’s Conjecture via improper colourings. We prove that every Kt-minor-free graph is (2t − 2)-colourable with monochromatic components of order at most 1/2 (t − 2). This result has no more colours and much smaller monochromatic components than all previous results in this direction. We then prove that every Kt-minor-free graph is (t − 1)-colourable with monochromatic degree at most t − 2. This is the best known degree bound for such a result. Both these theorems are based on a decomposition method of independent interest. We give analogous results for Ks,t-minorfree graphs, which lead to improved bounds on generalised colouring numbers for these classes. Finally, we prove that graphs containing no Kt-immersion are 2-colourable with bounded monochromatic degree

    Unavoidable Immersions and Intertwines of Graphs

    Get PDF
    The topological minor and the minor relations are well-studied binary relations on the class of graphs. A natural weakening of the topological minor relation is an immersion. An immersion of a graph H into a graph G is a map that injects the vertex set of H into the vertex set of G such that edges between vertices of H are represented by pairwise-edge-disjoint paths of G. In this dissertation, we present two results: the first giving a set of unavoidable immersions of large 3-edge-connected graphs and the second on immersion intertwines of infinite graphs. These results, along with the methods used to prove them, are analogues of results on the graph minor relation. A conjecture for the unavoidable immersions of large 3-edge-connected graphs is also stated with a partial proof

    Local Structure for Vertex-Minors

    Get PDF
    This thesis is about a conjecture of Geelen on the structure of graphs with a forbidden vertex-minor; the conjecture is like the Graph Minors Structure Theorem of Robertson and Seymour but for vertex-minors instead of minors. We take a step towards proving the conjecture by determining the "local structure''. Our first main theorem is a grid theorem for vertex-minors, and our second main theorem is more like the Flat Wall Theorem of Robertson and Seymour. We believe that the results presented in this thesis provide a path towards proving the full conjecture. To make this area more accessible, we have organized the first chapter as a survey on "structure for vertex-minors''
    corecore