61,785 research outputs found

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Inducing syntactic cut-elimination for indexed nested sequents

    Full text link
    The key to the proof-theoretic study of a logic is a proof calculus with a subformula property. Many different proof formalisms have been introduced (e.g. sequent, nested sequent, labelled sequent formalisms) in order to provide such calculi for the many logics of interest. The nested sequent formalism was recently generalised to indexed nested sequents in order to yield proof calculi with the subformula property for extensions of the modal logic K by (Lemmon-Scott) Geach axioms. The proofs of completeness and cut-elimination therein were semantic and intricate. Here we show that derivations in the labelled sequent formalism whose sequents are `almost treelike' correspond exactly to indexed nested sequents. This correspondence is exploited to induce syntactic proofs for indexed nested sequent calculi making use of the elegant proofs that exist for the labelled sequent calculi. A larger goal of this work is to demonstrate how specialising existing proof-theoretic transformations alleviate the need for independent proofs in each formalism. Such coercion can also be used to induce new cutfree calculi. We employ this to present the first indexed nested sequent calculi for intermediate logics.Comment: This is an extended version of the conference paper [20

    Automating inductive proof

    Get PDF

    Some Concerns Regarding Ternary-relation Semantics and Truth-theoretic Semantics in General

    Get PDF
    This paper deals with a collection of concerns that, over a period of time, led the author away from the Routley–Meyer semantics, and towards proof- theoretic approaches to relevant logics, and indeed to the weak relevant logic MC of meaning containment

    The Varieties of Ought-implies-Can and Deontic STIT Logic

    Get PDF
    STIT logic is a prominent framework for the analysis of multi-agent choice-making. In the available deontic extensions of STIT, the principle of Ought-implies-Can (OiC) fulfills a central role. However, in the philosophical literature a variety of alternative OiC interpretations have been proposed and discussed. This paper provides a modular framework for deontic STIT that accounts for a multitude of OiC readings. In particular, we discuss, compare, and formalize ten such readings. We provide sound and complete sequent-style calculi for all of the various STIT logics accommodating these OiC principles. We formally analyze the resulting logics and discuss how the different OiC principles are logically related. In particular, we propose an endorsement principle describing which OiC readings logically commit one to other OiC readings

    Introduction to linear logic and ludics, part II

    Full text link
    This paper is the second part of an introduction to linear logic and ludics, both due to Girard. It is devoted to proof nets, in the limited, yet central, framework of multiplicative linear logic and to ludics, which has been recently developped in an aim of further unveiling the fundamental interactive nature of computation and logic. We hope to offer a few computer science insights into this new theory
    • …
    corecore