10 research outputs found

    Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation

    Full text link
    We consider the stochastic Cahn-Hilliard equation driven by additive Gaussian noise in a convex domain with polygonal boundary in dimension d≤3d\le 3. We discretize the equation using a standard finite element method in space and a fully implicit backward Euler method in time. By proving optimal error estimates on subsets of the probability space with arbitrarily large probability and uniform-in-time moment bounds we show that the numerical solution converges strongly to the solution as the discretization parameters tend to zero.Comment: 25 page

    A Robust Solver for a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equaion. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.Comment: 17 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:1709.0400

    Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation

    No full text
    We consider the stochastic Cahn-Hilliard equation driven by additive Gaussian noise in a convex domain with polygonal boundary in dimension d≤3d\le 3. We discretize the equation using a standard finite element method is space and a fully implicit backward Euler method in time. By proving optimal error estimates on subsets of the probability space with arbitrarily large probability and uniform-in-time moment bounds we show that the numerical solution converges strongly to the solution as the discretization parameters tend to zero
    corecore