119 research outputs found

    Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation.</p> <p>Results</p> <p>A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from <url>http://dna.uio.no/swipe/</url> under the GNU Affero General Public License.</p> <p>Conclusions</p> <p>Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.</p

    SWAPHI: Smith-Waterman Protein Database Search on Xeon Phi Coprocessors

    Full text link
    The maximal sensitivity of the Smith-Waterman (SW) algorithm has enabled its wide use in biological sequence database search. Unfortunately, the high sensitivity comes at the expense of quadratic time complexity, which makes the algorithm computationally demanding for big databases. In this paper, we present SWAPHI, the first parallelized algorithm employing Xeon Phi coprocessors to accelerate SW protein database search. SWAPHI is designed based on the scale-and-vectorize approach, i.e. it boosts alignment speed by effectively utilizing both the coarse-grained parallelism from the many co-processing cores (scale) and the fine-grained parallelism from the 512-bit wide single instruction, multiple data (SIMD) vectors within each core (vectorize). By searching against the large UniProtKB/TrEMBL protein database, SWAPHI achieves a performance of up to 58.8 billion cell updates per second (GCUPS) on one coprocessor and up to 228.4 GCUPS on four coprocessors. Furthermore, it demonstrates good parallel scalability on varying number of coprocessors, and is also superior to both SWIPE on 16 high-end CPU cores and BLAST+ on 8 cores when using four coprocessors, with the maximum speedup of 1.52 and 1.86, respectively. SWAPHI is written in C++ language (with a set of SIMD intrinsics), and is freely available at http://swaphi.sourceforge.net.Comment: A short version of this paper has been accepted by the IEEE ASAP 2014 conferenc

    CBESW: Sequence Alignment on the Playstation 3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The exponential growth of available biological data has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing exponentially as well. The recent emergence of accelerator technologies has made it possible to achieve an excellent improvement in execution time for many bioinformatics applications, compared to current general-purpose platforms. In this paper, we demonstrate how the PlayStation<sup>® </sup>3, powered by the Cell Broadband Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm.</p> <p>Results</p> <p>For large datasets, our implementation on the PlayStation<sup>® </sup>3 provides a significant improvement in running time compared to other implementations such as SSEARCH, Striped Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646 MCUPS.</p> <p>Conclusion</p> <p>The results from our experiments demonstrate that the PlayStation<sup>® </sup>3 console can be used as an efficient low cost computational platform for high performance sequence alignment applications.</p

    CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to its high sensitivity, the Smith-Waterman algorithm is widely used for biological database searches. Unfortunately, the quadratic time complexity of this algorithm makes it highly time-consuming. The exponential growth of biological databases further deteriorates the situation. To accelerate this algorithm, many efforts have been made to develop techniques in high performance architectures, especially the recently emerging many-core architectures and their associated programming models.</p> <p>Findings</p> <p>This paper describes the latest release of the CUDASW++ software, CUDASW++ 2.0, which makes new contributions to Smith-Waterman protein database searches using compute unified device architecture (CUDA). A parallel Smith-Waterman algorithm is proposed to further optimize the performance of CUDASW++ 1.0 based on the single instruction, multiple thread (SIMT) abstraction. For the first time, we have investigated a partitioned vectorized Smith-Waterman algorithm using CUDA based on the virtualized single instruction, multiple data (SIMD) abstraction. The optimized SIMT and the partitioned vectorized algorithms were benchmarked, and remarkably, have similar performance characteristics. CUDASW++ 2.0 achieves performance improvement over CUDASW++ 1.0 as much as 1.74 (1.72) times using the optimized SIMT algorithm and up to 1.77 (1.66) times using the partitioned vectorized algorithm, with a performance of up to 17 (30) billion cells update per second (GCUPS) on a single-GPU GeForce GTX 280 (dual-GPU GeForce GTX 295) graphics card.</p> <p>Conclusions</p> <p>CUDASW++ 2.0 is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant performance improvement over CUDASW++ 1.0 using either the optimized SIMT algorithm or the partitioned vectorized algorithm for Smith-Waterman protein database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.</p

    Accelerated Profile HMM Searches

    Get PDF
    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches

    Manycore high-performance computing in bioinformatics

    Get PDF
    Mining the increasing amount of genomic data requires having very efficient tools. Increasing the efficiency can be obtained with better algorithms, but one could also take advantage of the hardware itself to reduce the application runtimes. Since a few years, issues with heat dissipation prevent the processors from having higher frequencies. One of the answers to maintain Moore's Law is parallel processing. Grid environments provide tools for effective implementation of coarse grain parallelization. Recently, another kind of hardware has attracted interest: multicore processors. Graphic processing units (GPUs) are a first step towards massively multicore processors. They allow everyone to have some teraflops of cheap computing power in its personal computer. The CUDA library (released in 2007) and the new standard OpenCL (specified in 2008) make programming of such devices very convenient. OpenCL is likely to gain a wide industrial support and to become a standard of choice for parallel programming. In all cases, the best speedups are obtained when combining precise algorithmic studies with a knowledge of the computing architectures. This is especially true with the memory hierarchy: the algorithms have to find a good balance between using large (and slow) global memories and some fast (but small) local memories. In this chapter, we will show how those manycore devices enable more efficient bioinformatics applications. We will first give some insights into architectures and parallelism. Then we will describe recent implementations specifically designed for manycore architectures, including algorithms on sequence alignment and RNA structure prediction. We will conclude with some thoughts about the dissemination of those algorithms and implementations: are they today available on the bookshelf for everyone

    SWPS3 – fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and ×86/SSE2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present swps3, a vectorized implementation of the Smith-Waterman local alignment algorithm optimized for both the Cell/BE and ×86 architectures. The paper describes swps3 and compares its performances with several other implementations.</p> <p>Findings</p> <p>Our benchmarking results show that swps3 is currently the fastest implementation of a vectorized Smith-Waterman on the Cell/BE, outperforming the only other known implementation by a factor of at least 4: on a Playstation 3, it achieves up to 8.0 billion cell-updates per second (GCUPS). Using the SSE2 instruction set, a quad-core Intel Pentium can reach 15.7 GCUPS. We also show that swps3 on this CPU is faster than a recent GPU implementation. Finally, we note that under some circumstances, alignments are computed at roughly the same speed as BLAST, a heuristic method.</p> <p>Conclusion</p> <p>The Cell/BE can be a powerful platform to align biological sequences. Besides, the performance gap between exact and heuristic methods has almost disappeared, especially for long protein sequences.</p
    corecore