10 research outputs found

    Stringent DDI-based Prediction of H. sapiens-M. tuberculosis H37Rv Protein-Protein Interactions

    Get PDF
    Background: H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited. Results: We develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces. We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies. We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have discovered some important properties of domains involved in host-pathogen PPIs. We find that both host and pathogen proteins involved in host-pathogen PPIs tend to have more domains than proteins involved in intra-species PPIs, and these domains have more interaction partners than domains on proteins involved in intra-species PPI. Conclusions: The stringent DDI-based prediction approach reported in this work provides a stringent strategy for predicting host-pathogen PPIs. It also performs better than a conventional DDI-based approach in predicting PPIs. We have predicted a small set of accurate H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies

    Computational Network Inference for Bacterial Interactomics

    Get PDF
    Since the large-scale experimental characterization of protein–protein interactions (PPIs) is not possible for all species, several computational PPI prediction methods have been developed that harness existing data from other species. While PPI network prediction has been extensively used in eukaryotes, microbial network inference has lagged behind. Since the large-scale experimental characterization of protein–protein interactions (PPIs) is not possible for all species, several computational PPI prediction methods have been developed that harness existing data from other species. While PPI network prediction has been extensively used in eukaryotes, microbial network inference has lagged behind. However, bacterial interactomes can be built using the same principles and techniques; in fact, several methods are better suited to bacterial genomes. These predicted networks allow systems-level analyses in species that lack experimental interaction data. This review describes the current network inference and analysis techniques and summarizes the use of computationally-predicted microbial interactomes to date

    A new framework for host-pathogen interaction research

    Get PDF
    COVID-19 often manifests with different outcomes in different patients, highlighting the complexity of the host-pathogen interactions involved in manifestations of the disease at the molecular and cellular levels. In this paper, we propose a set of postulates and a framework for systematically understanding complex molecular host-pathogen interaction networks. Specifically, we first propose four host-pathogen interaction (HPI) postulates as the basis for understanding molecular and cellular host-pathogen interactions and their relations to disease outcomes. These four postulates cover the evolutionary dispositions involved in HPIs, the dynamic nature of HPI outcomes, roles that HPI components may occupy leading to such outcomes, and HPI checkpoints that are critical for specific disease outcomes. Based on these postulates, an HPI Postulate and Ontology (HPIPO) framework is proposed to apply interoperable ontologies to systematically model and represent various granular details and knowledge within the scope of the HPI postulates, in a way that will support AI-ready data standardization, sharing, integration, and analysis. As a demonstration, the HPI postulates and the HPIPO framework were applied to study COVID-19 with the Coronavirus Infectious Disease Ontology (CIDO), leading to a novel approach to rational design of drug/vaccine cocktails aimed at interrupting processes occurring at critical host-coronavirus interaction checkpoints. Furthermore, the host-coronavirus protein-protein interactions (PPIs) relevant to COVID-19 were predicted and evaluated based on prior knowledge of curated PPIs and domain-domain interactions, and how such studies can be further explored with the HPI postulates and the HPIPO framework is discussed

    Investigation of HIV-TB co-infection through analysis of the potential impact of host genetic variation on host-pathogen protein interactions

    Get PDF
    HIV and Mycobacterium tuberculosis (Mtb) co-infection causes treatment and diagnostic difficulties, which places a major burden on health care systems in settings with high prevalence of both infectious diseases, such as South Africa. Human genetic variation adds further complexity, with variants affecting disease susceptibility and response to treatment. The identification of variants in African populations is affected by reference mapping bias, especially in complex regions like the Major Histocompatibility Complex (MHC), which plays an important role in the immune response to HIV and Mtb infection. We used a graph-based approach to identify novel variants in the MHC region within African samples without mapping to the canonical reference genome. We generated a host-pathogen functional interaction network made up of inter- and intraspecies protein interactions, gene expression during co-infection, drug-target interactions, and human genetic variation. Differential expression and network centrality properties were used to prioritise proteins that may be important in co-infection. Using the interaction network we identified 28 human proteins that interact with both pathogens (”bridge” proteins). Network analysis showed that while MHC proteins did not have significantly higher centrality measures than non-MHC proteins, bridge proteins had significantly shorter distance to MHC proteins. Proteins that were significantly differentially expressed during co-infection or contained variants clinically-associated with HIV or TB also had significantly stronger network properties. Finally, we identified common and consequential variants within prioritised proteins that may be clinically-associated with HIV and TB. The integrated network was extensively annotated and stored in a graph database that enables rapid and high throughput prioritisation of sets of genes or variants, facilitates detailed investigations and allows network-based visualisation

    In Silico Strategies for Prospective Drug Repositionings

    Get PDF
    The discovery of new drugs is one of pharmaceutical research's most exciting and challenging tasks. Unfortunately, the conventional drug discovery procedure is chronophagous and seldom successful; furthermore, new drugs are needed to address our clinical challenges (e.g., new antibiotics, new anticancer drugs, new antivirals).Within this framework, drug repositioning—finding new pharmacodynamic properties for already approved drugs—becomes a worthy drug discovery strategy.Recent drug discovery techniques combine traditional tools with in silico strategies to identify previously unaccounted properties for drugs already in use. Indeed, big data exploration techniques capitalize on the ever-growing knowledge of drugs' structural and physicochemical properties, drug–target and drug–drug interactions, advances in human biochemistry, and the latest molecular and cellular biology discoveries.Following this new and exciting trend, this book is a collection of papers introducing innovative computational methods to identify potential candidates for drug repositioning. Thus, the papers in the Special Issue In Silico Strategies for Prospective Drug Repositionings introduce a wide array of in silico strategies such as complex network analysis, big data, machine learning, molecular docking, molecular dynamics simulation, and QSAR; these strategies target diverse diseases and medical conditions: COVID-19 and post-COVID-19 pulmonary fibrosis, non-small lung cancer, multiple sclerosis, toxoplasmosis, psychiatric disorders, or skin conditions

    Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions

    No full text
    10.1186/1752-0509-7-S6-S6BMC Systems Biology7S
    corecore