5,256 research outputs found

    Interaction Grammars

    Get PDF
    Interaction Grammar (IG) is a grammatical formalism based on the notion of polarity. Polarities express the resource sensitivity of natural languages by modelling the distinction between saturated and unsaturated syntactic structures. Syntactic composition is represented as a chemical reaction guided by the saturation of polarities. It is expressed in a model-theoretic framework where grammars are constraint systems using the notion of tree description and parsing appears as a process of building tree description models satisfying criteria of saturation and minimality

    Parsing as Reduction

    Full text link
    We reduce phrase-representation parsing to dependency parsing. Our reduction is grounded on a new intermediate representation, "head-ordered dependency trees", shown to be isomorphic to constituent trees. By encoding order information in the dependency labels, we show that any off-the-shelf, trainable dependency parser can be used to produce constituents. When this parser is non-projective, we can perform discontinuous parsing in a very natural manner. Despite the simplicity of our approach, experiments show that the resulting parsers are on par with strong baselines, such as the Berkeley parser for English and the best single system in the SPMRL-2014 shared task. Results are particularly striking for discontinuous parsing of German, where we surpass the current state of the art by a wide margin

    A syntactic language model based on incremental CCG parsing

    Get PDF
    Syntactically-enriched language models (parsers) constitute a promising component in applications such as machine translation and speech-recognition. To maintain a useful level of accuracy, existing parsers are non-incremental and must span a combinatorially growing space of possible structures as every input word is processed. This prohibits their incorporation into standard linear-time decoders. In this paper, we present an incremental, linear-time dependency parser based on Combinatory Categorial Grammar (CCG) and classification techniques. We devise a deterministic transform of CCGbank canonical derivations into incremental ones, and train our parser on this data. We discover that a cascaded, incremental version provides an appealing balance between efficiency and accuracy

    Dependency parsing resources for French: Converting acquired lexical functional grammar F-Structure annotations and parsing F-Structures directly

    Get PDF
    Recent years have seen considerable success in the generation of automatically obtained wide-coverage deep grammars for natural language processing, given reliable and large CFG-like treebanks. For research within Lexical Functional Grammar framework, these deep grammars are typically based on an extended PCFG parsing scheme from which dependencies are extracted. However, increasing success in statistical dependency parsing suggests that such deep grammar approaches to statistical parsing could be streamlined. We explore this novel approach to deep grammar parsing within the framework of LFG in this paper, for French, showing that best results (an f-score of 69.46) for the established integrated architecture may be obtained for French

    The incremental use of morphological information and lexicalization in data-driven dependency parsing

    Get PDF
    Typological diversity among the natural languages of the world poses interesting challenges for the models and algorithms used in syntactic parsing. In this paper, we apply a data-driven dependency parser to Turkish, a language characterized by rich morphology and flexible constituent order, and study the effect of employing varying amounts of morpholexical information on parsing performance. The investigations show that accuracy can be improved by using representations based on inflectional groups rather than word forms, confirming earlier studies. In addition, lexicalization and the use of rich morphological features are found to have a positive effect. By combining all these techniques, we obtain the highest reported accuracy for parsing the Turkish Treebank

    A Sub-Character Architecture for Korean Language Processing

    Full text link
    We introduce a novel sub-character architecture that exploits a unique compositional structure of the Korean language. Our method decomposes each character into a small set of primitive phonetic units called jamo letters from which character- and word-level representations are induced. The jamo letters divulge syntactic and semantic information that is difficult to access with conventional character-level units. They greatly alleviate the data sparsity problem, reducing the observation space to 1.6% of the original while increasing accuracy in our experiments. We apply our architecture to dependency parsing and achieve dramatic improvement over strong lexical baselines.Comment: EMNLP 201

    Treebank-based acquisition of a Chinese lexical-functional grammar

    Get PDF
    Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is knowledge-intensive, time-consuming and (often prohibitively) expensive. A number of researchers have recently presented methods to automatically acquire wide-coverage, probabilistic constraint-based grammatical resources from treebanks (Cahill et al., 2002, Cahill et al., 2003; Cahill et al., 2004; Miyao et al., 2003; Miyao et al., 2004; Hockenmaier and Steedman, 2002; Hockenmaier, 2003), addressing the knowledge acquisition bottleneck in constraint-based grammar development. Research to date has concentrated on English and German. In this paper we report on an experiment to induce wide-coverage, probabilistic LFG grammatical and lexical resources for Chinese from the Penn Chinese Treebank (CTB) (Xue et al., 2002) based on an automatic f-structure annotation algorithm. Currently 96.751% of the CTB trees receive a single, covering and connected f-structure, 0.112% do not receive an f-structure due to feature clashes, while 3.137% are associated with multiple f-structure fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical entries with 20 distinct subcategorisation frame types. Of these 3436 are verbal entries with a total of 11 different frame types. We extract a number of PCFG-based LFG approximations. Currently our best automatically induced grammars achieve an f-score of 81.57% against the trees in unseen articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against the dependencies derived from the f-structures automatically generated for the original trees in 301-325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the dependencies derived from the manually annotated gold-standard f-structures for 50 trees randomly selected from articles 301-325

    A syntactified direct translation model with linear-time decoding

    Get PDF
    Recent syntactic extensions of statistical translation models work with a synchronous context-free or tree-substitution grammar extracted from an automatically parsed parallel corpus. The decoders accompanying these extensions typically exceed quadratic time complexity. This paper extends the Direct Translation Model 2 (DTM2) with syntax while maintaining linear-time decoding. We employ a linear-time parsing algorithm based on an eager, incremental interpretation of Combinatory Categorial Grammar (CCG). As every input word is processed, the local parsing decisions resolve ambiguity eagerly, by selecting a single supertag–operator pair for extending the dependency parse incrementally. Alongside translation features extracted from the derived parse tree, we explore syntactic features extracted from the incremental derivation process. Our empirical experiments show that our model significantly outperforms the state-of-the art DTM2 system
    • …
    corecore