1,168 research outputs found

    N17 Modifies mutant Huntingtin nuclear pathogenesis and severity of disease in HD BAC transgenic mice.

    Get PDF
    The nucleus is a critical subcellular compartment for the pathogenesis of polyglutamine disorders, including Huntington's disease (HD). Recent studies suggest the first 17-amino-acid domain (N17) of mutant huntingtin (mHTT) mediates its nuclear exclusion in cultured cells. Here, we test whether N17 could be a molecular determinant of nuclear mHTT pathogenesis in vivo. BAC transgenic mice expressing mHTT lacking the N17 domain (BACHD-ΔN17) show dramatically accelerated mHTT pathology exclusively in the nucleus, which is associated with HD-like transcriptionopathy. Interestingly, BACHD-ΔN17 mice manifest more overt disease-like phenotypes than the original BACHD mice, including body weight loss, movement deficits, robust striatal neuron loss, and neuroinflammation. Mechanistically, N17 is necessary for nuclear exclusion of small mHTT fragments that are part of nuclear pathology in HD. Together, our study suggests that N17 modifies nuclear pathogenesis and disease severity in HD mice by regulating subcellular localization of known nuclear pathogenic mHTT species

    Behavioral Characterization of a Knock-in Mouse Model of Huntington\u27s Disease

    Get PDF
    Huntington’s disease (HD) is a progressive, fatal neurodegenerative disease caused by an inherited CAG expansion on the Huntingtin (HTT) gene resulting in cognitive, affective, and motor related symptoms. Although clinical diagnosis depends on the presence of Huntington’s chorea, a movement disorder consisting of irregular movements, cognitive symptoms appear 10-15 years prior during the pre-manifest stage of the disease and are more debilitating to patients. One of the most important advances in HD research has been the generation of mouse models that recapitulate the features of human HD, allowing researchers to identify the pathogenic mechanisms associated with the disease and test the potential therapeutic treatments. Unfortunately, many treatments that have been successful in mouse models have failed to translate to humans when tested in pre-clinical trials. This is partly because experimenters have largely focused on improving late-stage features of HD such as cell death and motor dysfunction, and utilized transgenic mouse that are severely impaired but poorly reproduce the pathogenic processes that underlie the disease. In contrast, knock-in (KI) mouse models are genetically faithful to the human condition but remain underutilized in pre-clinical research due to their slower progression and subtle overt phenotype. This thesis characterized the behavioral deficits associated with the HttQ111/+ KI mouse model of HD and discovered novel cognitive phenotypes that are characteristic of the pre-manifest stage of the disease. At nine months of age, HttQ111/+ mice display improved procedural memory on the two-cue MWM, hypoactivity, reduced velocity, and increased anxiety during open field exploration, and intact spatial LTM with a reduction in the total number of investigations toward both objects during an object location task. Together, these tasks provide a number of robust behavioral phenotypes for use in pre-clinical research conducted in the HttQ111/+ mouse model of HD in the future

    Cognitive Dysfunction in Huntington's Disease: Mechanisms and Therapeutic Strategies Beyond BDNF

    Get PDF
    One of the main focuses in Huntington's disease (HD) research, as well as in most of the neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery, and neurotrophic and neurotransmitter signaling. This article is protected by copyright. All rights reserved

    Preclinical Experimental Therapeutics

    Get PDF
    This chapter begins by reviewing the mammalian models of Huntington’s disease (HD) that have been developed using mice, rats, and a number of large animals, including sheep, pigs, and nonhuman primates. Analysis of these models, together with genetically engineered mice created through specific manipulations of the mouse genome, has provided considerable insights into the molecular pathogenesis of HD. The number of potential therapeutic targets that have been proposed for HD is considerable, and their preclinical evaluation in HD mouse models is being used to select targets that should be pursued in drug development programs. Hence, mouse models have been used extensively to validate therapeutic targets and in the preclinical testing of therapeutic strategies. The limitations of these studies are discussed, and best-practice approaches are highlighted. The chapter concludes with a summary of the gene therapy approaches that are being developed, including strategies to lower the levels of huntingtin

    Inducible mutant huntingtin expression in HN10 cells reproduces Huntington's disease-like neuronal dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expansion of a polyglutamine repeat at the amino-terminus of huntingtin is the probable cause for Huntington's disease, a lethal progressive autosomal-dominant neurodegenerative disorders characterized by impaired motor performance and severe brain atrophy. The expanded polyglutamine repeat changes the conformation of huntingtin and initiates a range of pathogenic mechanisms in neurons including intracellular huntingtin aggregates, transcriptional dysregulation, energy metabolism deficits, synaptic dystrophy and ultimately neurodegeneration. It is unclear how these events relate to each other or if they can be reversed by pharmacological intervention. Here, we describe neuronal cell lines expressing inducible fragments of normal and mutant huntingtin.</p> <p>Results</p> <p>In HN10 cells, the expression of wild type and mutant huntingtin fragments was dependent on the induction time as well as on the concentration of the RheoSwitch<sup>® </sup>inducing ligand. In order to analyze the effect of mutant huntingtin expression on cellular functions we concentrated on the 72Q exon1 huntingtin expressing cell line and found that upon induction, it was possible to carefully dissect mutant huntingtin-induced phenotypes as they developed over time. Dysregulation of transcription as a result of mutant huntingtin expression showed a transcription signature replicating that reported in animal models and Huntington's disease patients. Crucially, triggering of neuronal differentiation in mutant huntingtin expressing cell resulted in the appearance of additional pathological hallmarks of Huntington's disease including cell death.</p> <p>Conclusion</p> <p>We developed neuronal cell lines with inducible expression of wild type and mutant huntingtin. These new cell lines represent a reliable <it>in vitro </it>system for modeling Huntington's disease and should find wide use for high-throughput screening application and for investigating the biology of mutant huntingtin.</p

    Investigating the role of Pin1 and Rrs1 in Huntington's Disease

    Get PDF

    The pathobiology of perturbed mutant huntingtin protein-protein interactions in Huntington's disease

    Get PDF
    Mutations are at the root of many human diseases. Still, we largely do not exactly understand how they trigger pathogenesis. One, more recent, hypothesis has been that they comprehensively perturb protein-protein interaction (PPI) networks and significantly alter key biological processes. Under this premise, many rare genetic disorders with Mendelian inheritance, like e.g. Huntington's disease and several spinocerebellar ataxias, are likely to be caused by complex genotype-phenotype relationships involving abnormal PPIs. These altered PPI networks and their effects on cellular pathways are poorly understood at the molecular level. In this review, we focus on PPIs that are perturbed by the expanded pathogenic polyglutamine tract in huntingtin (HTT), the protein which, in its mutated form, leads to the autosomal dominant, neurodegenerative Huntington's disease. One aspect of perturbed mutant HTT interactions is the formation of abnormal protein species such as fibrils or large neuronal inclusions due to homotypic and heterotypic aberrant molecular interactions. This review focuses on abnormal PPIs that are associated with the assembly of mutant HTT aggregates in cells and their potential relevance in disease. Furthermore, the mechanisms and pathobiological processes that may contribute to phenotype development, neuronal dysfunction and toxicity in HD brains are also discussed

    The relationship of microRNAs to clinical features of Huntington's and Parkinson's disease

    Get PDF
    MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting messenger RNA transcripts for storage or degradation. miRNA deregulation has been reported in neurodegenerative disorders, such as Huntington’s disease (HD) and Parkinson’s disease (PD), which may impact gene expression and modify disease progression and/or severity. To assess the relationship of miRNA levels to HD, small RNA sequence analysis was performed for 26 HD and 36 non-disease control samples derived from human prefrontal cortex. 75 miRNAs were differentially expressed in HD brain as compared to controls at genome-wide significance (FDR q<0.05). Among HD brains, nine miRNAs were significantly associated with the extent of neuropathological involvement in the striatum and three of these significantly related to a continuous measure of striatal involvement, after statistical adjustment for the contribution of HD gene length. Five miRNAs were identified as having a significant, inverse relationship to age of motor onset, in particular, miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the source of tissue profiled in these studies, the relationship of miR-10b-5p levels to striatal involvement in the disease was independent of cortical involvement. In blood plasma from 26 HD, 4 asymptomatic HD gene carriers and 8 controls, miR-10b-5p levels were significantly elevated in HD as compared to non-diseased and preclinical HD subjects, demonstrating that miRNA alterations associated with diseased brain may be detected peripherally. Using small RNA sequence analysis for 29 PD brains, 125 miRNAs were identified as differentially expressed at genome-wide significance (FDR q<0.05) in PD versus controls. A set of 29 miRNAs accurately classified PD from non-diseased brain (93.9% specificity, 96.6% sensitivity, 4.8% absolute error). In contrast to HD, among PD cases, miR-10b-5p was significantly decreased and had a significant, positive association to onset age independent of age at death. These studies provide a detailed miRNA profile for HD and PD brain, identify miRNAs associated with disease pathology and suggest miRNA changes observed in brain can be detected in blood. Together, these findings support the potential of miRNA biomarkers for the diagnosis and assessment of progression for neurodegenerative diseases
    • …
    corecore