2 research outputs found

    Applications of graphene-based materials in sensors

    Get PDF
    This Special Issue compiles a set of innovative developments on the use of graphene-based materials in the fabrication of sensors. In particular, these contributions report original studies on a wide variety of sensors, such as gas sensors for NO2 or NH3 detection, antibody biosensors or mass sensors. All these devices have one point in common: they have been built using graphene-based materials like graphene, graphene oxide, reduced graphene oxide, inkject printing graphene, graphene-based composite sponges, graphene screen-printed electrodes or graphene quantum dots

    Stress-Insensitive Resonant Graphene Mass Sensing via Frequency Ratio

    No full text
    Herein, a peripherally clamped stretched square monolayer graphene sheet with a side length of 10 nm was demonstrated as a resonator for atomic-scale mass sensing via molecular dynamics (MD) simulation. Then, a novel method of mass determination using the first three resonant modes (mode11, mode21 and mode22) was developed to avoid the disturbance of stress fluctuation in graphene. MD simulation results indicate that improving the prestress in stretched graphene increases the sensitivity significantly. Unfortunately, it is difficult to determine the mass accurately by the stress-reliant fundamental frequency shift. However, the absorbed mass in the middle of graphene sheets decreases the resonant frequency of mode11 dramatically while having negligible effect on that of mode21 and mode22, which implies that the latter two frequency modes are appropriate for compensating the stress-induced frequency shift of mode11. Hence, the absorbed mass, with a resolution of 3.3 × 10−22 g, is found using the frequency ratio of mode11 to mode21 or mode22, despite the unstable prestress ranging from 32 GPa to 47 GPa. This stress insensitivity contributes to the applicability of the graphene-based resonant mass sensor in real applications
    corecore