1,533 research outputs found

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Crowdsourcing Crisis Management Platforms: A Privacy and Data Protection Risk Assessment and Recommendations

    Get PDF
    Over the last few years, crowdsourcing have expanded rapidly allowing citizens to connect with each other, governments to connect with common mass, to coordinate disaster response work, to map political conflicts, acquiring information quickly and participating in issues that affect day-to- day life of citizens. As emerging tools and technologies offer huge potential to response quickly and on time during crisis, crisis responders do take support from these tools and techniques. The ‘Guiding Principles’ of the Sendai Framework for Disaster Risk Reduction 2015-2030 identifies that ‘disaster risk reduction requires a multi-hazard approach and inclusive risk-informed decision-making (RIDM) based on the open exchange and dissemination of disaggregated data, including by sex, age and disability, as well as on easily accessible, up-to-date, comprehensible, science-based, non-sensitive risk information, complemented by traditional knowledge. Addressing the ‘Priority Action’ 1 & 2, this PhD research aims to identify various risks and present recommendations for ‘RIDM Process’ in form of a general Privacy and Data Protection Risk Assessment and Recommendations for crowdsourcing crisis management. It includes legal, ethical and technical recommendations

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    Recent advances in mobile touch screen security authentication methods: a systematic literature review

    Get PDF
    The security of the smartphone touch screen has attracted considerable attention from academics as well as industry and security experts. The maximum security of the mobile phone touch screen is necessary to protect the user’s stored information in the event of loss. Previous reviews in this research domain have focused primarily on biometrics and graphical passwords while leaving out PIN, gesture/pattern and others. In this paper, we present a comprehensive literature review of the recent advances made in mobile touch screen authentication techniques covering PIN, pattern/gesture, biometrics, graphical password and others. A new comprehensive taxonomy of the various multiple class authentication techniques is presented in order to expand the existing taxonomies on single class authentication techniques. The review reveals that the most recent studies that propose new techniques for providing maximum security to smartphone touch screen reveal multi-objective optimization problems. In addition, open research problems and promising future research directions are presented in the paper. Expert researchers can benefit from the review by gaining new insights into touch screen cyber security, and novice researchers may use this paper as a starting point of their inquir

    Unobtrusive Location-Based Access Control Utilizing Existing IEEE 802.11 Infrastructure

    Get PDF
    Mobile devices can sense several types of signals over the air using different radio frequency technologies (e.g., Wi-Fi, Bluetooth, cellular signals, etc.). Furthermore, mobile devices receive broadcast messages from transmitting entities (e.g., network access points, cellular phone towers, etc.) and can measure the received signal strength from these entities. Broadcast messages carry the information needed in case a mobile device chooses to establish communication. We believe that these signals can be utilized in the context of access control, specifically because they could provide an indication of the location of a user\u27s device. Such a “location proof” could then be used to provide access to location-based services. In this research, we propose a location-based access control (LBAC) system that utilizes tokens broadcasted by IEEE 802.11 (Wi-Fi) access points as a location proof for clients requesting access to a resource. This work differs from existing research in that it allows the verification of a client’s location continuously and unobtrusively, utilizing existing IEEE 802.11 infrastructure (which makes it easily deployable), and resulting in a secure and convenient LBAC system. This work illustrates an important application of location-based services (LBS): security. LBAC systems manage access to resources by utilizing the location of clients. The proposed LBAC system attempts to take advantage of the current IEEE 802.11 infrastructure, making it directly applicable to an existing ubiquitous system infrastructure

    Reconciling User Privacy and Implicit Authentication for Mobile Devices

    Get PDF
    In an implicit authentication system, a user profile is used as an additional factor to strengthen the authentication of mobile users. The profile consists of features that are constructed using the history of user actions on her mobile device over time. The profile is stored on the server and is used to authenticate an access request originated from the device at a later time. An access request will include a vector of recent measurements of the features on the device, that will be subsequently matched against the features stored at the server, to accept or reject the request. The features however include private information such as user location or web sites that have been visited. We propose a privacy-preserving implicit authentication system that achieves implicit authentication without revealing information about the usage profiles of the users to the server. We propose an architecture, give a formal security model and a construction with provable security in two settings where: (i) the device follows the protocol, and (ii) the device is captured and behaves maliciously
    corecore