5 research outputs found

    Streamlining Progress-Based Derivations of Concurrent Programs

    Get PDF
    The logic of Owicki and Gries is a well known logic for verifying safety properties of concurrent programs. Using this logic, Feijen and van Gasteren describe a method for deriving concurrent programs based on safety. In this work, we explore derivation techniques of concurrent programs using progress-based reasoning. We use a framework that combines the safety logic of Owicki and Gries, and the progress logic of UNITY. Our contributions improve the applicability of our earlier techniques by reducing the calculational overhead in the formal proofs and derivations. To demonstrate the effectiveness of our techniques, a derivation of Dekker's mutual exclusion algorithm is presented. This derivation leads to the discovery of some new and simpler variations of this famous algorithm

    Deriving real-time action systems with multiple time bands using algebraic reasoning

    Get PDF
    The verify-while-develop paradigm allows one to incrementally develop programs from their specifications using a series of calculations against the remaining proof obligations. This paper presents a derivation method for real-time systems with realistic constraints on their behaviour. We develop a high-level interval-based logic that provides flexibility in an implementation, yet allows algebraic reasoning over multiple granularities and sampling multiple sensors with delay. The semantics of an action system is given in terms of interval predicates and algebraic operators to unify the logics for an action system and its properties, which in turn simplifies the calculations and derivations

    Streamlining progress-based derivations of concurrent programs

    No full text
    The logic of Owicki and Gries is a well-known logic for verifying safety properties of concurrent programs. Using this logic, Feijen and van Gasteren describe a method for deriving concurrent programs based on safety. In this work, we explore derivation techniques of concurrent programs using progress-based reasoning. We use a framework that combines the safety logic of Owicki and Gries, and the progress logic of UNITY. Our contributions improve the applicability of our earlier techniques by reducing the calculational overhead in the formal proofs and derivations. To demonstrate the effectiveness of our techniques, a derivation of Dekker’s mutual exclusion algorithm is presented. This derivation leads to the discovery of some new and simpler variants of this famous algorithm

    Streamlining progress-based derivations of concurrent programs

    No full text

    Under consideration for publication in Formal Aspects of Computing Streamlining progress-based derivations of concurrent programs

    No full text
    Abstract. The logic of Owicki and Gries is a well known logic for verifying safety properties of concurrent programs. Using this logic, Feijen and van Gasteren describe a method for deriving concurrent programs based on safety. In this work, we explore derivation techniques of concurrent programs using progress-based reasoning. We use a framework that combines the safety logic of Owicki and Gries, and the progress logic of UNITY. Our contributions improve the applicability of our earlier techniques by reducing the calculational overhead in the formal proofs and derivations. To demonstrate the effectiveness of our techniques, a derivation of Dekker’s mutual exclusion algorithm is presented. This derivation leads to the discovery of some new and simpler variations of this famous algorithm
    corecore