19 research outputs found

    Parallel ODETLAP for terrain compression and reconstruction

    Full text link
    We introduce a parallel approximation of an Over-determined Laplacian Partial Differential Equation solver (ODETLAP) applied to the compression and restoration of terrain data used for Geographical Information Systems (GIS). ODET-LAP can be used to reconstruct a compressed elevation map, or to generate a dense regular grid from airborne Light Detection and Ranging (LIDAR) point cloud data. With previous methods, the time to execute ODETLAP does not scale well with the size of the input elevation map, resulting in running times that are prohibitively long for large data sets. Our algorithm divides the data set into patches, runs ODET-LAP on each patch, and then merges the patches together. This method gives two distinct speed improvements. First, we provide scalability by reducing the complexity such that the execution time grows almost linearly with the size of the input, even when run on a single processor. Second, we are able to calculate ODETLAP on the patches concurrently in a parallel or distributed environment. Our new patchbased implementation takes 2 seconds to run ODETLAP on an 800 × 800 elevation map using 128 processors, while the original version of ODETLAP takes nearly 10 minutes on a single processor (271 times longer). We demonstrate the effectiveness of the new algorithm by running it on data sets as large as 16000 × 16000 on a cluster of computers. We also discuss our preliminary results from running on an IBM Blue Gene/L system with 32,768 processors

    Variational Approach to Image Processing Using the Equations of Mathematical Physics

    Get PDF
    Рівняння Пуассона використовується у багатьох напрямах науки і техніки. Не дивлячись на те, що рівняння Пуассона історично виникло в процесі розв'язання задач математичної фізики, воно знаходить все більше застосовується і в інших областях, у тому числі в області обробки зображень. За недавній час у цій сфері з'явилася досить велика кількість серйозних робіт, які пропонують алгоритми з використанням рівняння Пуассона у найрізноманітніших завданнях. У роботі були розглянуті наступні задачі: задача про відновлення зображення по полю градієнтів, задача безшовного клонування, задача клонування зі змішуванням градієнтів зображень, задача про редагування області зображення, задача про створення ефекту ночі та зміни освітлюваності. Також досліджено основний принцип переходу від варіаційної постановки задачі при обробці зображень до крайової задачі з використанням самого рівняння Пуассона. Реалізовано інші задачі обробки зображень рівнянням Пуассона у середовищі MatLab. Кожна з розглянутих задач використовує варіаційний підхід для отримання шуканого розв'язку.Poisson's equation is used in many areas of science and technology. Despite the fact that the Poisson equation historically occurred in the solutions of mathematical physics, it is increasingly being used in other fields, including the field of image processing. During recent times in this area there was quite a lot of serious work, which offer algorithms using the Poisson equation in the most problems. The paper addressed the following problems: the problem of reconstructing the image on the gradient field, the task seamless cloning, cloning problem with mixing image gradients, the task of editing the image area, the problem of creating a night-light effect and change. Also it studied the basic principle of a transition from the variational formulation of the problem in image processing to the boundary value problem using the Poisson equation itself. Realized other Eq image processing tasks Poisson in MatLab environment. Each of the considered problems using variational approach to obtain the desired solution

    Progressive Refinement Imaging

    Get PDF
    This paper presents a novel technique for progressive online integration of uncalibrated image sequences with substantial geometric and/or photometric discrepancies into a single, geometrically and photometrically consistent image. Our approach can handle large sets of images, acquired from a nearly planar or infinitely distant scene at different resolutions in object domain and under variable local or global illumination conditions. It allows for efficient user guidance as its progressive nature provides a valid and consistent reconstruction at any moment during the online refinement process. // Our approach avoids global optimization techniques, as commonly used in the field of image refinement, and progressively incorporates new imagery into a dynamically extendable and memory‐efficient Laplacian pyramid. Our image registration process includes a coarse homography and a local refinement stage using optical flow. Photometric consistency is achieved by retaining the photometric intensities given in a reference image, while it is being refined. Globally blurred imagery and local geometric inconsistencies due to, e.g. motion are detected and removed prior to image fusion. // We demonstrate the quality and robustness of our approach using several image and video sequences, including handheld acquisition with mobile phones and zooming sequences with consumer cameras

    Real-time gradient-domain painting

    Full text link
    corecore