2,092 research outputs found

    Dynamic Adaptation on Non-Stationary Visual Domains

    Full text link
    Domain adaptation aims to learn models on a supervised source domain that perform well on an unsupervised target. Prior work has examined domain adaptation in the context of stationary domain shifts, i.e. static data sets. However, with large-scale or dynamic data sources, data from a defined domain is not usually available all at once. For instance, in a streaming data scenario, dataset statistics effectively become a function of time. We introduce a framework for adaptation over non-stationary distribution shifts applicable to large-scale and streaming data scenarios. The model is adapted sequentially over incoming unsupervised streaming data batches. This enables improvements over several batches without the need for any additionally annotated data. To demonstrate the effectiveness of our proposed framework, we modify associative domain adaptation to work well on source and target data batches with unequal class distributions. We apply our method to several adaptation benchmark datasets for classification and show improved classifier accuracy not only for the currently adapted batch, but also when applied on future stream batches. Furthermore, we show the applicability of our associative learning modifications to semantic segmentation, where we achieve competitive results

    A survey on machine learning for recurring concept drifting data streams

    Get PDF
    The problem of concept drift has gained a lot of attention in recent years. This aspect is key in many domains exhibiting non-stationary as well as cyclic patterns and structural breaks affecting their generative processes. In this survey, we review the relevant literature to deal with regime changes in the behaviour of continuous data streams. The study starts with a general introduction to the field of data stream learning, describing recent works on passive or active mechanisms to adapt or detect concept drifts, frequent challenges in this area, and related performance metrics. Then, different supervised and non-supervised approaches such as online ensembles, meta-learning and model-based clustering that can be used to deal with seasonalities in a data stream are covered. The aim is to point out new research trends and give future research directions on the usage of machine learning techniques for data streams which can help in the event of shifts and recurrences in continuous learning scenarios in near real-time

    DynED: Dynamic Ensemble Diversification in Data Stream Classification

    Full text link
    Ensemble methods are commonly used in classification due to their remarkable performance. Achieving high accuracy in a data stream environment is a challenging task considering disruptive changes in the data distribution, also known as concept drift. A greater diversity of ensemble components is known to enhance prediction accuracy in such settings. Despite the diversity of components within an ensemble, not all contribute as expected to its overall performance. This necessitates a method for selecting components that exhibit high performance and diversity. We present a novel ensemble construction and maintenance approach based on MMR (Maximal Marginal Relevance) that dynamically combines the diversity and prediction accuracy of components during the process of structuring an ensemble. The experimental results on both four real and 11 synthetic datasets demonstrate that the proposed approach (DynED) provides a higher average mean accuracy compared to the five state-of-the-art baselines.Comment: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM '23), October 21--25, 2023, Birmingham, United Kingdo

    The GC3 framework : grid density based clustering for classification of streaming data with concept drift.

    Get PDF
    Data mining is the process of discovering patterns in large sets of data. In recent years there has been a paradigm shift in how the data is viewed. Instead of considering the data as static and available in databases, data is now regarded as a stream as it continuously flows into the system. One of the challenges posed by the stream is its dynamic nature, which leads to a phenomenon known as Concept Drift. This causes a need for stream mining algorithms which are adaptive incremental learners capable of evolving and adjusting to the changes in the stream. Several models have been developed to deal with Concept Drift. These systems are discussed in this thesis and a new system, the GC3 framework is proposed. The GC3 framework leverages the advantages of the Gris Density based Clustering and the Ensemble based classifiers for streaming data, to be able to detect the cause of the drift and deal with it accordingly. In order to demonstrate the functionality and performance of the framework a synthetic data stream called the TJSS stream is developed, which embodies a variety of drift scenarios, and the model’s behavior is analyzed over time. Experimental evaluation with the synthetic stream and two real world datasets demonstrated high prediction capability of the proposed system with a small ensemble size and labeling ratio. Comparison of the methodology with a traditional static model with no drifts detection capability and with existing ensemble techniques for stream classification, showed promising results. Also, the analysis of data structures maintained by the framework provided interpretability into the dynamics of the drift over time. The experimentation analysis of the GC3 framework shows it to be promising for use in dynamic drifting environments where concepts can be incrementally learned in the presence of only partially labeled data

    Online Product Quantization

    Full text link
    Approximate nearest neighbor (ANN) search has achieved great success in many tasks. However, existing popular methods for ANN search, such as hashing and quantization methods, are designed for static databases only. They cannot handle well the database with data distribution evolving dynamically, due to the high computational effort for retraining the model based on the new database. In this paper, we address the problem by developing an online product quantization (online PQ) model and incrementally updating the quantization codebook that accommodates to the incoming streaming data. Moreover, to further alleviate the issue of large scale computation for the online PQ update, we design two budget constraints for the model to update partial PQ codebook instead of all. We derive a loss bound which guarantees the performance of our online PQ model. Furthermore, we develop an online PQ model over a sliding window with both data insertion and deletion supported, to reflect the real-time behaviour of the data. The experiments demonstrate that our online PQ model is both time-efficient and effective for ANN search in dynamic large scale databases compared with baseline methods and the idea of partial PQ codebook update further reduces the update cost.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering (DOI: 10.1109/TKDE.2018.2817526

    Heterogeneous ensemble selection for evolving data streams.

    Get PDF
    Ensemble learning has been widely applied to both batch data classification and streaming data classification. For the latter setting, most existing ensemble systems are homogenous, which means they are generated from only one type of learning model. In contrast, by combining several types of different learning models, a heterogeneous ensemble system can achieve greater diversity among its members, which helps to improve its performance. Although heterogeneous ensemble systems have achieved many successes in the batch classification setting, it is not trivial to extend them directly to the data stream setting. In this study, we propose a novel HEterogeneous Ensemble Selection (HEES) method, which dynamically selects an appropriate subset of base classifiers to predict data under the stream setting. We are inspired by the observation that a well-chosen subset of good base classifiers may outperform the whole ensemble system. Here, we define a good candidate as one that expresses not only high predictive performance but also high confidence in its prediction. Our selection process is thus divided into two sub-processes: accurate-candidate selection and confident-candidate selection. We define an accurate candidate in the stream context as a base classifier with high accuracy over the current concept, while a confident candidate as one with a confidence score higher than a certain threshold. In the first sub-process, we employ the prequential accuracy to estimate the performance of a base classifier at a specific time, while in the latter sub-process, we propose a new measure to quantify the predictive confidence and provide a method to learn the threshold incrementally. The final ensemble is formed by taking the intersection of the sets of confident classifiers and accurate classifiers. Experiments on a wide range of data streams show that the proposed method achieves competitive performance with lower running time in comparison to the state-of-the-art online ensemble methods

    A Broad Ensemble Learning System for Drifting Stream Classification

    Full text link
    In a data stream environment, classification models must handle concept drift efficiently and effectively. Ensemble methods are widely used for this purpose; however, the ones available in the literature either use a large data chunk to update the model or learn the data one by one. In the former, the model may miss the changes in the data distribution, and in the latter, the model may suffer from inefficiency and instability. To address these issues, we introduce a novel ensemble approach based on the Broad Learning System (BLS), where mini chunks are used at each update. BLS is an effective lightweight neural architecture recently developed for incremental learning. Although it is fast, it requires huge data chunks for effective updates, and is unable to handle dynamic changes observed in data streams. Our proposed approach named Broad Ensemble Learning System (BELS) uses a novel updating method that significantly improves best-in-class model accuracy. It employs an ensemble of output layers to address the limitations of BLS and handle drifts. Our model tracks the changes in the accuracy of the ensemble components and react to these changes. We present the mathematical derivation of BELS, perform comprehensive experiments with 20 datasets that demonstrate the adaptability of our model to various drift types, and provide hyperparameter and ablation analysis of our proposed model. Our experiments show that the proposed approach outperforms nine state-of-the-art baselines and supplies an overall improvement of 13.28% in terms of average prequential accuracy.Comment: Submitted to IEEE Acces

    On ensemble techniques for data stream regression

    Get PDF
    An ensemble of learners tends to exceed the predictive performance of individual learners. This approach has been explored for both batch and online learning. Ensembles methods applied to data stream classification were thoroughly investigated over the years, while their regression counterparts received less attention in comparison. In this work, we discuss and analyze several techniques for generating, aggregating, and updating ensembles of regressors for evolving data streams. We investigate the impact of different strategies for inducing diversity into the ensemble by randomizing the input data (resampling, random subspaces and random patches). On top of that, we devote particular attention to techniques that adapt the ensemble model in response to concept drifts, including adaptive window approaches, fixed periodical resets and randomly determined windows. Extensive empirical experiments show that simple techniques can obtain similar predictive performance to sophisticated algorithms that rely on reactive adaptation (i.e., concept drift detection and recovery)
    corecore