765 research outputs found

    Policy iteration for perfect information stochastic mean payoff games with bounded first return times is strongly polynomial

    Full text link
    Recent results of Ye and Hansen, Miltersen and Zwick show that policy iteration for one or two player (perfect information) zero-sum stochastic games, restricted to instances with a fixed discount rate, is strongly polynomial. We show that policy iteration for mean-payoff zero-sum stochastic games is also strongly polynomial when restricted to instances with bounded first mean return time to a given state. The proof is based on methods of nonlinear Perron-Frobenius theory, allowing us to reduce the mean-payoff problem to a discounted problem with state dependent discount rate. Our analysis also shows that policy iteration remains strongly polynomial for discounted problems in which the discount rate can be state dependent (and even negative) at certain states, provided that the spectral radii of the nonnegative matrices associated to all strategies are bounded from above by a fixed constant strictly less than 1.Comment: 17 page

    The Complexity of Infinite-Horizon General-Sum Stochastic Games

    Get PDF
    We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon general-sum stochastic games. We focus on the problem of computing NE in such stochastic games when each player is restricted to choosing a stationary policy and rewards are discounted. First, we prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we consider turn-based specializations of such games where at each state there is at most a single player that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we show that under further structural assumptions on the rewards computing NE in such turn-based games is possible in polynomial time. Towards achieving these results we establish structural facts about stochastic games of broader utility, including monotonicity of utilities under single-state single-action changes and reductions to settings where each player controls a single state

    Smoothed analysis of deterministic discounted and mean-payoff games

    Full text link
    We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem and later retracted. It stands in contrast with a recent counter-example by Christ and Yannakakis, showing that Howard's policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin, and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart

    Termination Criteria for Solving Concurrent Safety and Reachability Games

    Get PDF
    We consider concurrent games played on graphs. At every round of a game, each player simultaneously and independently selects a move; the moves jointly determine the transition to a successor state. Two basic objectives are the safety objective to stay forever in a given set of states, and its dual, the reachability objective to reach a given set of states. We present in this paper a strategy improvement algorithm for computing the value of a concurrent safety game, that is, the maximal probability with which player~1 can enforce the safety objective. The algorithm yields a sequence of player-1 strategies which ensure probabilities of winning that converge monotonically to the value of the safety game. Our result is significant because the strategy improvement algorithm provides, for the first time, a way to approximate the value of a concurrent safety game from below. Since a value iteration algorithm, or a strategy improvement algorithm for reachability games, can be used to approximate the same value from above, the combination of both algorithms yields a method for computing a converging sequence of upper and lower bounds for the values of concurrent reachability and safety games. Previous methods could approximate the values of these games only from one direction, and as no rates of convergence are known, they did not provide a practical way to solve these games

    The Complexity of Infinite-Horizon General-Sum Stochastic Games

    Get PDF
    We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon general-sum stochastic games. We focus on the problem of computing NE in such stochastic games when each player is restricted to choosing a stationary policy and rewards are discounted. First, we prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we consider turn-based specializations of such games where at each state there is at most a single player that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we show that under further structural assumptions on the rewards computing NE in such turn-based games is possible in polynomial time. Towards achieving these results we establish structural facts about stochastic games of broader utility, including monotonicity of utilities under single-state single-action changes and reductions to settings where each player controls a single state
    • …
    corecore